Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 11
Atmos. Chem. Phys., 16, 6823–6840, 2016
https://doi.org/10.5194/acp-16-6823-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 6823–6840, 2016
https://doi.org/10.5194/acp-16-6823-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Jun 2016

Research article | 06 Jun 2016

Continental anthropogenic primary particle number emissions

Pauli Paasonen1,2,3, Kaarle Kupiainen2,3, Zbigniew Klimont2, Antoon Visschedijk4, Hugo A. C. Denier van der Gon4, and Markus Amann2 Pauli Paasonen et al.
  • 1Department of Physics, University of Helsinki, Helsinki, Finland
  • 2International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
  • 3Finnish Environment Institute (SYKE), Helsinki, Finland
  • 4TNO, the Netherlands Organisation for Applied Scientific Research, Utrecht, the Netherlands

Abstract. Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas–Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol–cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening emission regulations. However, there are significant uncertainties in these current emission estimates and the key actions for decreasing the uncertainties are pointed out.

Publications Copernicus
Download
Short summary
In this paper we show the first results of size-segregated anthropogenic particle number emissions from the GAINS emission scenario model. The shares of different sources and their predicted changes from 2010 to 2030 are described, showing clear difference in sources dominating the particle number and mass emissions. We also point out the main uncertainties in number emissions. The GAINS particle number emissions can be applied in improving the evaluation of aerosol climate and health effects.
In this paper we show the first results of size-segregated anthropogenic particle number...
Citation