Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 16, issue 2 | Copyright

Special issue: The Saharan Aerosol Long-range Transport and Aerosol-Cloud-interaction...

Atmos. Chem. Phys., 16, 651-674, 2016
https://doi.org/10.5194/acp-16-651-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Jan 2016

Research article | 21 Jan 2016

Investigations of boundary layer structure, cloud characteristics and vertical mixing of aerosols at Barbados with large eddy simulations

M. Jähn1, D. Muñoz-Esparza2, F. Chouza3, O. Reitebuch3, O. Knoth1, M. Haarig1, and A. Ansmann1 M. Jähn et al.
  • 1Leibniz Institute for Tropospheric Research, Permoserstraße 15, 04318 Leipzig, Germany
  • 2Earth and Environmental Sciences Division (EES-16), Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
  • 3Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Atmospheric Physics, Münchner Straße 20, 82234 Oberpfaffenhofen-Wessling, Germany

Abstract. Large eddy simulations (LESs) are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Due to the presence of a topographically structured island surface in the domain center, the model setup has to be designed with open lateral boundaries. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude potential temperature perturbations. In this work, this method is for the first time tested and validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE field campaign is used for both model initialization and a comparison with Doppler wind and Raman lidar data. Several numerical sensitivity tests are carried out to demonstrate the problems related to “gray zone modeling” when using coarser spatial grid spacings beyond the inertial subrange of three-dimensional turbulence or when the turbulent marine boundary layer flow is replaced by laminar winds. Especially cloud properties in the downwind area west of Barbados are markedly affected in these kinds of simulations. Results of an additional simulation with a strong trade-wind inversion reveal its effect on cloud layer depth and location. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z ≈ 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength) and wind shear. Comparisons of LES model output with wind lidar data show similarities in the downwind vertical wind structure. Additionally, the model results accurately reproduce the development of the daytime convective boundary layer measured by the Raman lidar.

Download & links
Publications Copernicus
Special issue
Download
Short summary
Large eddy simulations (LESs) are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Incoming Saharan dust layers are analyzed and effects of layer thinning, subsidence and turbulent downward transport become apparent, which are sensitive to atmospheric stability and wind shear. Comparisons of LES model output with lidar data systems are made to validate the modeling results.
Large eddy simulations (LESs) are performed for the area of the Caribbean island Barbados to...
Citation
Share