Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 10
Atmos. Chem. Phys., 16, 6303–6318, 2016
https://doi.org/10.5194/acp-16-6303-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 6303–6318, 2016
https://doi.org/10.5194/acp-16-6303-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 May 2016

Research article | 24 May 2016

What effect does VOC sampling time have on derived OH reactivity?

Hannah Sonderfeld1, Iain R. White1, Iain C. A. Goodall1,a, James R. Hopkins2, Alastair C. Lewis2, Ralf Koppmann3, and Paul S. Monks1 Hannah Sonderfeld et al.
  • 1Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
  • 2National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK
  • 3Institute for Atmospheric and Environmental Research, University of Wuppertal, 42119 Wuppertal, Germany
  • anow at: Faculty of Engineering and Science, Greenwich University, London, SE10 9LS, UK

Abstract. State-of-the-art techniques allow for rapid measurements of total OH reactivity. Unknown sinks of OH and oxidation processes in the atmosphere have been attributed to what has been termed “missing” OH reactivity. Often overlooked are the differences in timescales over which the diverse measurement techniques operate. Volatile organic compounds (VOCs) acting as sinks of OH are often measured by gas chromatography (GC) methods which provide low-frequency measurements on a timescale of hours, while sampling times are generally only a few minutes. Here, the effect of the sampling time and thus the contribution of unmeasured VOC variability on OH reactivity is investigated. Measurements of VOC mixing ratios by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) conducted during two field campaigns (ClearfLo and PARADE) in an urban and a semi-rural environment were used to calculate OH reactivity. VOCs were selected to represent variability for different compound classes. Data were averaged over different time intervals to simulate lower time resolutions and were then compared to the mean hourly OH reactivity. The results show deviations in the range of 1 to 25 %. The observed impact of VOC variability is found to be greater for the semi-rural site.

The selected compounds were scaled by the contribution of their compound class to the total OH reactivity from VOCs based on concurrent gas chromatography measurements conducted during the ClearfLo campaign. Prior to being scaled, the variable signal of aromatic compounds results in larger deviations in OH reactivity for short sampling intervals compared to oxygenated VOCs (OVOCs). However, once scaled with their lower share during the ClearfLo campaign, this effect was reduced. No seasonal effect on the OH reactivity distribution across different VOCs was observed at the urban site.

Publications Copernicus
Download
Short summary
Unknown sinks of OH and oxidation processes in the atmosphere have been attributed to what has been termed "missing" OH reactivity. Often overlooked are the differences in timescales over which the diverse measurement techniques operate. The effect of the sampling time and thus the contribution of unmeasured VOC variability on OH reactivity is investigated.
Unknown sinks of OH and oxidation processes in the atmosphere have been attributed to what has...
Citation