Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 16, issue 9
Atmos. Chem. Phys., 16, 5665-5683, 2016
https://doi.org/10.5194/acp-16-5665-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 5665-5683, 2016
https://doi.org/10.5194/acp-16-5665-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 May 2016

Research article | 10 May 2016

Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation System Simulations

Sourish Basu1,2, John Bharat Miller1,2, and Scott Lehman3 Sourish Basu et al.
  • 1Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder CO, USA
  • 2Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder CO, USA
  • 3Institute for Arctic and Alpine Research, University of Colorado Boulder, Boulder CO, USA

Abstract. National annual total CO2 emissions from combustion of fossil fuels are likely known to within 5–10% for most developed countries. However, uncertainties are inevitably larger (by unknown amounts) for emission estimates at regional and monthly scales, or for developing countries. Given recent international efforts to establish emission reduction targets, independent determination and verification of regional and national scale fossil fuel CO2 emissions are likely to become increasingly important. Here, we take advantage of the fact that precise measurements of 14C in CO2 provide a largely unbiased tracer for recently added fossil-fuel-derived CO2 in the atmosphere and present an atmospheric inversion technique to jointly assimilate observations of CO2 and 14CO2 in order to simultaneously estimate fossil fuel emissions and biospheric exchange fluxes of CO2. Using this method in a set of Observation System Simulation Experiments (OSSEs), we show that given the coverage of 14CO2 measurements available in 2010 (969 over North America, 1063 globally), we can recover the US national total fossil fuel emission to better than 1% for the year and to within 5% for most months. Increasing the number of 14CO2 observations to  ∼ 5000 per year over North America, as recently recommended by the National Academy of Science (NAS) (Pacala et al., 2010), we recover monthly emissions to within 5% for all months for the US as a whole and also for smaller, highly emissive regions over which the specified data coverage is relatively dense, such as for the New England states or the NY-NJ-PA tri-state area. This result suggests that, given continued improvement in state-of-the art transport models, a measurement program similar in scale to that recommended by the NAS can provide for independent verification of bottom-up inventories of fossil fuel CO2 at the regional and national scale. In addition, we show that the dual tracer inversion framework can detect and minimize biases in estimates of the biospheric flux that would otherwise arise in a traditional CO2-only inversion when prescribing fixed but inaccurate fossil fuel fluxes.

Publications Copernicus
Download
Short summary
We present a dual tracer atmospheric inversion technique to separately estimate biospheric and fossil fuel CO2 fluxes from atmospheric measurements of CO2 and 14CO2. In addition to estimating monthly regional fossil fuel fluxes of CO2, this system can also reduce biases in biospheric fluxes that arise in a traditional CO2 inversion from prescribing a fixed but inaccurate fossil fuel flux.
We present a dual tracer atmospheric inversion technique to separately estimate biospheric and...
Citation
Share