Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 8
Atmos. Chem. Phys., 16, 5315–5322, 2016
https://doi.org/10.5194/acp-16-5315-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 5315–5322, 2016
https://doi.org/10.5194/acp-16-5315-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Apr 2016

Research article | 28 Apr 2016

Comparison of eddy covariance and modified Bowen ratio methods for measuring gas fluxes and implications for measuring fluxes of persistent organic pollutants

Damien Johann Bolinius et al.
Related subject area  
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Speciated atmospheric mercury and sea–air exchange of gaseous mercury in the South China Sea
Chunjie Wang, Zhangwei Wang, Fan Hui, and Xiaoshan Zhang
Atmos. Chem. Phys., 19, 10111–10127, https://doi.org/10.5194/acp-19-10111-2019,https://doi.org/10.5194/acp-19-10111-2019, 2019
Short summary
Methane emissions from oil and gas platforms in the North Sea
Stuart N. Riddick, Denise L. Mauzerall, Michael Celia, Neil R. P. Harris, Grant Allen, Joseph Pitt, John Staunton-Sykes, Grant L. Forster, Mary Kang, David Lowry, Euan G. Nisbet, and Alistair J. Manning
Atmos. Chem. Phys., 19, 9787–9796, https://doi.org/10.5194/acp-19-9787-2019,https://doi.org/10.5194/acp-19-9787-2019, 2019
Short summary
Assessing London CO2, CH4 and CO emissions using aircraft measurements and dispersion modelling
Joseph R. Pitt, Grant Allen, Stéphane J.-B. Bauguitte, Martin W. Gallagher, James D. Lee, Will Drysdale, Beth Nelson, Alistair J. Manning, and Paul I. Palmer
Atmos. Chem. Phys., 19, 8931–8945, https://doi.org/10.5194/acp-19-8931-2019,https://doi.org/10.5194/acp-19-8931-2019, 2019
Short summary
2005–2017 ozone trends and potential benefits of local measures as deduced from air quality measurements in the north of the Barcelona metropolitan area
Jordi Massagué, Cristina Carnerero, Miguel Escudero, José María Baldasano, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 19, 7445–7465, https://doi.org/10.5194/acp-19-7445-2019,https://doi.org/10.5194/acp-19-7445-2019, 2019
Evolution of Anthropogenic Air Pollutant Emissions in Guangdong Province, China, from 2006 to 2015
Yahui Bian, Jiamin Ou, Zhijiong Huang, Zhuangmin Zhong, Yuanqian Xu, Zhiwei Zhang, Xiao Xiao, Xiao Ye, Yuqi Wu, Xiaohong Yin, Liangfu Chen, Min Shao, and Junyu Zheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-235,https://doi.org/10.5194/acp-2019-235, 2019
Revised manuscript accepted for ACP
Short summary
Cited articles  
Aubinet, M.: Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem, Ecol. Appl., 18, 1368–1378, https://doi.org/10.1890/06-1336.1, 2008.
Baldocchi, D. D., Hincks, B. B., and Meyers, T. P.: Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods, Ecology, 69, 1331, https://doi.org/10.2307/1941631, 1988.
Businger, J. A.: Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques, J. Clim. Appl. Meteorol., 25, 1100–1124, https://doi.org/10.1175/1520-0450(1986)025<1100:EOTAWW>2.0.CO;2, 1986.
Businger, J. A. and Oncley, S. P.: Flux measurement with conditional sampling, J. Atmos. Ocean. Tech., 7, 349–352, https://doi.org/10.1175/1520-0426(1990)007<0349:FMWCS>2.0.CO;2, 1990.
Choi, S.-D., Staebler, R. M., Li, H., Su, Y., Gevao, B., Harner, T., and Wania, F.: Depletion of gaseous polycyclic aromatic hydrocarbons by a forest canopy, Atmos. Chem. Phys., 8, 4105–4113, https://doi.org/10.5194/acp-8-4105-2008, 2008.
Publications Copernicus
Download
Short summary
Our article confronts the question of how to accurately measure fluxes of volatile chemicals between the earth's surface and the atmosphere when the possibility of using high-frequency analyzers, such as with eddy covariance techniques, is non-existent. By subsampling and averaging publically available data from FLUXNET and applying the modified Bowen ratio method (MBR), we have determined that the MBR can work when using prolonged sampling times and single average estimates of eddy diffusivity.
Our article confronts the question of how to accurately measure fluxes of volatile chemicals...
Citation