Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 8
Atmos. Chem. Phys., 16, 5171–5189, 2016
https://doi.org/10.5194/acp-16-5171-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 5171–5189, 2016
https://doi.org/10.5194/acp-16-5171-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Apr 2016

Research article | 26 Apr 2016

Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia,and Look Rock, Tennessee

Sri Hapsari Budisulistiorini1, Karsten Baumann2, Eric S. Edgerton2, Solomon T. Bairai3, Stephen Mueller4, Stephanie L. Shaw5, Eladio M. Knipping6, Avram Gold1, and Jason D. Surratt1 Sri Hapsari Budisulistiorini et al.
  • 1Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
  • 2Atmospheric Research & Analysis, Inc., Cary, NC, USA
  • 3Battelle, Pueblo, CO, USA
  • 4Ensafe, Nashville, TN, USA
  • 5Electric Power Research Institute, Palo Alto, CA, USA
  • 6Electric Power Research Institute, Washington, DC, USA

Abstract. A year-long near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia, in 2012) and rural (Look Rock, Tennessee, in 2013) site in the southeastern US using the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA) and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region. The highest concentrations of NR-PM1 were observed during winter and fall seasons at the urban site and during spring and summer at the rural site. Across all seasons and at both sites, NR-PM1 was composed largely of OA (up to 76 %) and sulfate (up to 31 %). Six distinct OA sources were resolved by positive matrix factorization applied to the ACSM organic mass spectral data collected from the two sites over the 1 year of near-continuous measurements at each site: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), semi-volatile oxygenated OA (SV-OOA), low-volatility oxygenated OA (LV-OOA), isoprene-derived epoxydiols (IEPOX) OA (IEPOX-OA) and 91Fac (a factor dominated by a distinct ion at mz 91 fragment ion previously observed in biogenic influenced areas). LV-OOA was observed throughout the year at both sites and contributed up to 66 % of total OA mass. HOA was observed during the entire year only at the urban site (on average 21 % of OA mass). BBOA (15–33 % of OA mass) was observed during winter and fall, likely dominated by local residential wood burning emission. Although SV-OOA contributes quite significantly ( ∼  27 %), it was observed only at the urban site during colder seasons. IEPOX-OA was a major component (27–41 %) of OA at both sites, particularly in spring and summer. An ion fragment at mz 75 is well correlated with the mz 82 ion associated with the aerosol mass spectrum of IEPOX-derived secondary organic aerosol (SOA). The contribution of 91Fac to the total OA mass was significant (on average 22 % of OA mass) at the rural site only during warmer months. Comparison of 91Fac OA time series with SOA tracers measured from filter samples collected at Look Rock suggests that isoprene oxidation through a pathway other than IEPOX SOA chemistry may contribute to its formation. Other biogenic sources could also contribute to 91Fac, but there remains a need to resolve the exact source of this factor based on its significant contribution to rural OA mass.

Publications Copernicus
Download
Short summary
A year-long near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia, in 2012) and rural (Look Rock, Tennessee, in 2013) site in the southeastern US using the Aerodyne Aerosol Chemical Speciation Monitor, collocated with established air-monitoring network measurements, to identify sources of organic aerosol (OA). Further, high-volume filter samples were collected for measurements of OA tracers by offline mass spectrometry tools.
A year-long near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was...
Citation