Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 16, issue 2
Atmos. Chem. Phys., 16, 505–524, 2016
https://doi.org/10.5194/acp-16-505-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: HCCT-2010: a complex ground-based experiment on aerosol-cloud...

Atmos. Chem. Phys., 16, 505–524, 2016
https://doi.org/10.5194/acp-16-505-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Jan 2016

Research article | 19 Jan 2016

Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a central European mountain site during HCCT-2010

A. Roth et al.

Viewed

Total article views: 2,240 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,125 1,015 100 2,240 388 86 83
  • HTML: 1,125
  • PDF: 1,015
  • XML: 100
  • Total: 2,240
  • Supplement: 388
  • BibTeX: 86
  • EndNote: 83
Views and downloads (calculated since 08 Sep 2015)
Cumulative views and downloads (calculated since 08 Sep 2015)

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 07 Jul 2020
Publications Copernicus
Download
Short summary
This paper reports on single-particle measurements of ambient aerosol particles and cloud residues sampled from orographic clouds on a mountain site in central Germany. The results show that soot particles can get efficiently activated in cloud droplets when they are mixed with or coated by sulfate and nitrate. Cloud processing leads to addition of nitrate and sulfate to the particles, thereby increasing the hygroscopicity of these particles when they remain in the air after cloud evaporation.
This paper reports on single-particle measurements of ambient aerosol particles and cloud...
Citation