Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 8
Atmos. Chem. Phys., 16, 4945–4966, 2016
https://doi.org/10.5194/acp-16-4945-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 4945–4966, 2016
https://doi.org/10.5194/acp-16-4945-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Apr 2016

Research article | 21 Apr 2016

Comparing model and measured ice crystal concentrations in orographic clouds during the INUPIAQ campaign

Robert J. Farrington1, Paul J. Connolly1, Gary Lloyd1, Keith N. Bower1, Michael J. Flynn1, Martin W. Gallagher1, Paul R. Field2, Chris Dearden1, and Thomas W. Choularton1 Robert J. Farrington et al.
  • 1School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, UK
  • 2Met Office, Exeter, UK

Abstract. This paper assesses the reasons for high ice number concentrations observed in orographic clouds by comparing in situ measurements from the Ice NUcleation Process Investigation And Quantification field campaign (INUPIAQ) at Jungfraujoch, Switzerland (3570 m a.s.l.) with the Weather Research and Forecasting model (WRF) simulations over real terrain surrounding Jungfraujoch. During the 2014 winter field campaign, between 20 January and 28 February, the model simulations regularly underpredicted the observed ice number concentration by 103 L−1. Previous literature has proposed several processes for the high ice number concentrations in orographic clouds, including an increased ice nucleating particle (INP) concentration, secondary ice multiplication and the advection of surface ice crystals into orographic clouds. We find that increasing INP concentrations in the model prevents the simulation of the mixed-phase clouds that were witnessed during the INUPIAQ campaign at Jungfraujoch. Additionally, the inclusion of secondary ice production upwind of Jungfraujoch into the WRF simulations cannot consistently produce enough ice splinters to match the observed concentrations. A flux of surface hoar crystals was included in the WRF model, which simulated ice concentrations comparable to the measured ice number concentrations, without depleting the liquid water content (LWC) simulated in the model. Our simulations therefore suggest that high ice concentrations observed in mixed-phase clouds at Jungfraujoch are caused by a flux of surface hoar crystals into the orographic clouds.

Publications Copernicus
Download
Short summary
This paper assesses the reasons for high ice number concentrations observed in orographic clouds by comparing observations with model simulations over Jungfraujoch, Switzerland. The results suggest that ice nuclei do not significantly contribute to the high concentrations and that a surface source of ice crystals is responsible for the witnessed ice number concentrations.
This paper assesses the reasons for high ice number concentrations observed in orographic clouds...
Citation