Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 8
Atmos. Chem. Phys., 16, 4927–4943, 2016
https://doi.org/10.5194/acp-16-4927-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 4927–4943, 2016
https://doi.org/10.5194/acp-16-4927-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Apr 2016

Research article | 21 Apr 2016

The impact of monthly variation of the Pacific–North America (PNA) teleconnection pattern on wintertime surface-layer aerosol concentrations in the United States

Jin Feng1,2, Hong Liao3, and Jianping Li4,5 Jin Feng et al.
  • 1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • 2University of Chinese Academy of Sciences, Beijing, China
  • 3School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, China
  • 4College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
  • 5Joint Center for Global Change Studies, Beijing, China

Abstract. The Pacific–North America teleconnection (PNA) is the leading general circulation pattern in the troposphere over the region of North Pacific to North America during wintertime. This study examined the impacts of monthly variations of the PNA phase (positive or negative phase) on wintertime surface-layer aerosol concentrations in the United States (US) by analyzing observations during 1999–2013 from the Air Quality System of the Environmental Protection Agency (EPA-AQS) and the model results for 1986–2006 from the global three-dimensional Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem). The composite analyses on the EPA-AQS observations over 1999–2013 showed that the average concentrations of PM2.5, sulfate, nitrate, ammonium, organic carbon, and black carbon aerosols over the US were higher in the PNA positive phases (25 % of the winter months examined, and this fraction of months had the highest positive PNA index values) than in the PNA negative phases (25 % of the winter months examined, and this fraction of months had the highest negative PNA index values) by 1.0 µg m−3 (8.7 %), 0.01 µg m−3 (0.5 %), 0.3 µg m−3 (29.1 %), 0.1 µg m−3 (11.9 %), 0.6 µg m−3 (13.5 %), and 0.2 µg m−3 (27.8 %), respectively. The simulated geographical patterns of the differences in concentrations of all aerosol species between the PNA positive and negative phases were similar to observations. Based on the GEOS-Chem simulation, the pattern correlation coefficients were calculated to show the impacts of PNA-induced variations in meteorological fields on aerosol concentrations. The PNA phase was found (i) to influence sulfate concentrations mainly through changes in planetary boundary layer height (PBLH), precipitation (PR), and temperature; (ii) to influence nitrate concentrations mainly through changes in temperature; and (iii) to influence concentrations of ammonium, organic carbon, and black carbon mainly through changes in PR and PBLH. Results from this work have important implications for the understanding and prediction of air quality in the US.

Publications Copernicus
Download
Short summary
We examine the impacts of monthly variations in Pacific-North America (PNA) teleconnection on aerosol concentrations in the United States during wintertime by observations from the EPA-AQS and the model results from the GEOS-Chem. The surface-layer PM2.5 concentrations in the PNA positive phases were higher by 8.7 % (12.2 %) relative to the PNA negative phases based on observed (simulated) concentrations, which have important implications for understanding and prediction of air quality in the US.
We examine the impacts of monthly variations in Pacific-North America (PNA) teleconnection on...
Citation