Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 16, issue 8 | Copyright
Atmos. Chem. Phys., 16, 4915-4925, 2016
https://doi.org/10.5194/acp-16-4915-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Apr 2016

Research article | 21 Apr 2016

First continuous ground-based observations of long period oscillations in the vertically resolved wind field of the stratosphere and mesosphere

Rolf Rüfenacht, Klemens Hocke, and Niklaus Kämpfer Rolf Rüfenacht et al.
  • Institute of Applied Physics, University of Bern, Bern, Switzerland

Abstract. Direct measurements of middle-atmospheric wind oscillations with periods between 5 and 50 days in the altitude range between mid-stratosphere (5hPa) and upper mesosphere (0.02hPa) have been made using a novel ground-based Doppler wind radiometer. The oscillations were not inferred from tracer measurements, as the radiometer offers the unique capability of near-continuous horizontal wind profile measurements. Observations from four campaigns at high, middle and low latitudes with an average duration of 10 months have been analyzed. The dominant oscillation has mostly been found to lie in the extra-long period range (20–50 days), while the well-known atmospheric normal modes around 5, 10 and 16 days have also been observed. Comparisons of our results with ECMWF operational analysis data revealed remarkably good agreement below 0.3hPa but discrepancies above.

Download & links
Publications Copernicus
Download
Short summary
We quantitatively analyze oscillations with periods from 5 to 50 days in horizontal wind profiles between mid-stratosphere and mesopause based on more than 44 months of data from high, mid- and low latitudes measured by a novel instrument. For the first time, long time series of continuous wind measurements allow direct observations of dynamics throughout this altitude range. The observations agree remarkably well with the ECMWF model in the stratosphere but discrepancies exist in the mesosphere.
We quantitatively analyze oscillations with periods from 5 to 50 days in horizontal wind...
Citation
Share