Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 16, issue 7 | Copyright

Special issue: Ten years of Ozone Monitoring Instrument (OMI) observations...

Atmos. Chem. Phys., 16, 4631-4639, 2016
https://doi.org/10.5194/acp-16-4631-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Apr 2016

Research article | 13 Apr 2016

Hotspot of glyoxal over the Pearl River delta seen from the OMI satellite instrument: implications for emissions of aromatic hydrocarbons

Christopher Chan Miller1, Daniel J. Jacob1,2, Gonzalo González Abad3, and Kelly Chance3 Christopher Chan Miller et al.
  • 1Department of Earth and Planetary Science, Harvard University, Cambridge MA, USA
  • 2School of Engineering and Applied Sciences, Harvard University, Cambridge MA, USA
  • 3Harvard-Smithsonian Center for Astrophysics, Cambridge MA, USA

Abstract. The Pearl River delta (PRD) is a densely populated hub of industrial activity located in southern China. OMI (Ozone Monitoring Instrument) satellite observations reveal a large hotspot of glyoxal (CHOCHO) over the PRD that is almost twice as large as any other in Asia. Formaldehyde (HCHO) and NO2 observed by OMI are also high in the PRD but no more than in other urban/industrial areas of China. The CHOCHO hotspot over the PRD can be explained by industrial paint and solvent emissions of aromatic volatile organic compounds (VOCs), with toluene being a dominant contributor. By contrast, HCHO in the PRD originates mostly from VOCs emitted by combustion (principally vehicles). By applying a plume transport model to wind-segregated OMI data, we show that the CHOCHO and HCHO enhancements over the PRD observed by OMI are consistent with current VOC emission inventories. Prior work using CHOCHO retrievals from the SCIAMACHY satellite instrument suggested that emission inventories for aromatic VOCs in the PRD were too low by a factor of 10–20; we attribute this result in part to bias in the SCIAMACHY data and in part to underestimated CHOCHO yields from oxidation of aromatics. Our work points to the importance of better understanding CHOCHO yields from the oxidation of aromatics in order to interpret space-based CHOCHO observations in polluted environments.

Download & links
Publications Copernicus
Special issue
Download
Short summary
Volatile organic compounds (VOCs) are important precursors for photochemical smog. Glyoxal is an organic compound produced in the atmosphere from reactions of larger VOCs. OMI satellite observations of glyoxal show a large hotspot over the Pearl River delta. The hotspot can be explained by industrial paint and solvent emissions of aromatic VOCs. Our work shows OMI observations are consistent with current VOC emissions estimates, whereas previous work has suggested large underestimates.
Volatile organic compounds (VOCs) are important precursors for photochemical smog. Glyoxal is...
Citation
Share