Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 16, issue 1 | Copyright
Atmos. Chem. Phys., 16, 35-46, 2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Jan 2016

Research article | 14 Jan 2016

Effect of gravity wave temperature fluctuations on homogeneous ice nucleation in the tropical tropopause layer

T. Dinh1, A. Podglajen2, A. Hertzog2, B. Legras3, and R. Plougonven2 T. Dinh et al.
  • 1Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey, USA
  • 2Laboratoire de Météorologie Dynamique, École Polytechnique, Palaiseau, France
  • 3Laboratoire de Météorologie Dynamique, École Normale Supérieure, Paris, France

Abstract. The impact of high-frequency fluctuations of temperature on homogeneous nucleation of ice crystals in the vicinity of the tropical tropopause is investigated using a bin microphysics scheme for air parcels. The imposed temperature fluctuations come from measurements during isopycnic balloon flights near the tropical tropopause. The balloons collected data at high frequency, guaranteeing that gravity wave signals are well resolved.

With the observed temperature time series, the numerical simulations with homogeneous freezing show a full range of ice number concentration (INC) as previously observed in the tropical upper troposphere. In particular, a low INC may be obtained if the gravity wave perturbations produce a non-persistent cooling rate (even with large magnitude) such that the absolute change in temperature remains small during nucleation. This result is explained analytically by a dependence of the INC on the absolute drop in temperature (and not on the cooling rate). This work suggests that homogeneous ice nucleation is not necessarily inconsistent with observations of low INCs.

Download & links
Publications Copernicus