Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 1
Atmos. Chem. Phys., 16, 305–323, 2016
https://doi.org/10.5194/acp-16-305-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 305–323, 2016
https://doi.org/10.5194/acp-16-305-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Jan 2016

Research article | 18 Jan 2016

Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering

A. Laakso1, H. Kokkola1, A.-I. Partanen2,3, U. Niemeier4, C. Timmreck4, K. E. J. Lehtinen1,5, H. Hakkarainen6, and H. Korhonen2 A. Laakso et al.
  • 1Finnish Meteorological Institute, Atmospheric Research Centre of Eastern Finland, Kuopio, Finland
  • 2Finnish Meteorological Institute, Climate Research, Helsinki, Finland
  • 3Department of Geography, Planning and Environment, Concordia University, Montréal, Québec, Canada
  • 4Max Planck Institute for Meteorology, Hamburg, Germany
  • 5Department of Applied Physics, University of Eastern Finland, Kuopio campus, Kuopio, Finland
  • 6A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland

Abstract. Both explosive volcanic eruptions, which emit sulfur dioxide into the stratosphere, and stratospheric geoengineering via sulfur injections can potentially cool the climate by increasing the amount of scattering particles in the atmosphere. Here we employ a global aerosol-climate model and an Earth system model to study the radiative and climate changes occurring after an erupting volcano during solar radiation management (SRM). According to our simulations the radiative impacts of the eruption and SRM are not additive and the radiative effects and climate changes occurring after the eruption depend strongly on whether SRM is continued or suspended after the eruption. In the former case, the peak burden of the additional stratospheric sulfate as well as changes in global mean precipitation are fairly similar regardless of whether the eruption takes place in a SRM or non-SRM world. However, the maximum increase in the global mean radiative forcing caused by the eruption is approximately 21 % lower compared to a case when the eruption occurs in an unperturbed atmosphere. In addition, the recovery of the stratospheric sulfur burden and radiative forcing is significantly faster after the eruption, because the eruption during the SRM leads to a smaller number and larger sulfate particles compared to the eruption in a non-SRM world. On the other hand, if SRM is suspended immediately after the eruption, the peak increase in global forcing caused by the eruption is about 32 % lower compared to a corresponding eruption into a clean background atmosphere. In this simulation, only about one-third of the global ensemble-mean cooling occurs after the eruption, compared to that occurring after an eruption under unperturbed atmospheric conditions. Furthermore, the global cooling signal is seen only for the 12 months after the eruption in the former scenario compared to over 40 months in the latter. In terms of global precipitation rate, we obtain a 36 % smaller decrease in the first year after the eruption and again a clearly faster recovery in the concurrent eruption and SRM scenario, which is suspended after the eruption. We also found that an explosive eruption could lead to significantly different regional climate responses depending on whether it takes place during geoengineering or into an unperturbed background atmosphere. Our results imply that observations from previous large eruptions, such as Mount Pinatubo in 1991, are not directly applicable when estimating the potential consequences of a volcanic eruption during stratospheric geoengineering.

Publications Copernicus
Download
Short summary
We have studied the impacts of a volcanic eruption during solar radiation management (SRM) using an aerosol-climate model ECHAM5-HAM-SALSA and an Earth system model MPI-ESM. A volcanic eruption during stratospheric sulfur geoengineering would lead to larger particles and smaller amount of new particles than if an volcano erupts in normal atmospheric conditions. Thus, volcanic eruption during SRM would lead to only a small additional cooling which would last for a significantly shorter period.
We have studied the impacts of a volcanic eruption during solar radiation management (SRM) using...
Citation