Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 5
Atmos. Chem. Phys., 16, 2819–2842, 2016
https://doi.org/10.5194/acp-16-2819-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 2819–2842, 2016
https://doi.org/10.5194/acp-16-2819-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Mar 2016

Research article | 04 Mar 2016

The impact of snow nitrate photolysis on boundary layer chemistry and the recycling and redistribution of reactive nitrogen across Antarctica and Greenland in a global chemical transport model

Maria Zatko et al.

Related authors

The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin, Utah, USA
Maria Zatko, Joseph Erbland, Joel Savarino, Lei Geng, Lauren Easley, Andrew Schauer, Timothy Bates, Patricia K. Quinn, Bonnie Light, David Morison, Hans D. Osthoff, Seth Lyman, William Neff, Bin Yuan, and Becky Alexander
Atmos. Chem. Phys., 16, 13837–13851, https://doi.org/10.5194/acp-16-13837-2016,https://doi.org/10.5194/acp-16-13837-2016, 2016
Short summary
On the origin of the occasional spring nitrate peak in Greenland snow
L. Geng, J. Cole-Dai, B. Alexander, J. Erbland, J. Savarino, A. J. Schauer, E. J. Steig, P. Lin, Q. Fu, and M. C. Zatko
Atmos. Chem. Phys., 14, 13361–13376, https://doi.org/10.5194/acp-14-13361-2014,https://doi.org/10.5194/acp-14-13361-2014, 2014
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Spatial–temporal variations and process analysis of O3 pollution in Hangzhou during the G20 summit
Zhi-Zhen Ni, Kun Luo, Yang Gao, Xiang Gao, Fei Jiang, Cheng Huang, Jian-Ren Fan, Joshua S. Fu, and Chang-Hong Chen
Atmos. Chem. Phys., 20, 5963–5976, https://doi.org/10.5194/acp-20-5963-2020,https://doi.org/10.5194/acp-20-5963-2020, 2020
Short summary
Model simulations of atmospheric methane (1997–2016) and their evaluation using NOAA and AGAGE surface and IAGOS-CARIBIC aircraft observations
Peter H. Zimmermann, Carl A. M. Brenninkmeijer, Andrea Pozzer, Patrick Jöckel, Franziska Winterstein, Andreas Zahn, Sander Houweling, and Jos Lelieveld
Atmos. Chem. Phys., 20, 5787–5809, https://doi.org/10.5194/acp-20-5787-2020,https://doi.org/10.5194/acp-20-5787-2020, 2020
Short summary
The role of plume-scale processes in long-term impacts of aircraft emissions
Thibaud M. Fritz, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Atmos. Chem. Phys., 20, 5697–5727, https://doi.org/10.5194/acp-20-5697-2020,https://doi.org/10.5194/acp-20-5697-2020, 2020
Short summary
Evaluation of the CAMS global atmospheric trace gas reanalysis 2003–2016 using aircraft campaign observations
Yuting Wang, Yong-Feng Ma, Henk Eskes, Antje Inness, Johannes Flemming, and Guy P. Brasseur
Atmos. Chem. Phys., 20, 4493–4521, https://doi.org/10.5194/acp-20-4493-2020,https://doi.org/10.5194/acp-20-4493-2020, 2020
Short summary
Quantification and evaluation of atmospheric ammonia emissions with different methods: a case study for the Yangtze River Delta region, China
Yu Zhao, Mengchen Yuan, Xin Huang, Feng Chen, and Jie Zhang
Atmos. Chem. Phys., 20, 4275–4294, https://doi.org/10.5194/acp-20-4275-2020,https://doi.org/10.5194/acp-20-4275-2020, 2020
Short summary

Cited articles

Allen, D., Pickering, K., Duncan, B., and Damon, M.: Impact of lightning NO emissions on North American photochemistry as determined using the Global Modeling Initiative (GMI) model, J. Geophys. Res., 115, D22301, https://doi.org/10.1029/2010JD014062, 2010.
Alexander, B., Savarino, J., Kreutz, K. J., and Thiemens, M. H.: Impact of preindustrial biomass burning emissions on the oxidation pathways of tropospheric sulphur and nitrogen, J. Geophys. Res., 109, D08303, https://doi.org/10.1029/2003JD004218, 2004.
Anastasio, C. and Chu, L.: Photochemistry of nitrous acid (HONO) and nitrous acidium ion (H2ONO+) in aqueous solution and ice, Environ. Sci. Technol., 43, 1108–1114, 2009.
Beine, H., Anastastio, C., Esposito, G., Patten, K., Wilkening, E., Domine, F., Voisin, D., Barret, M., Houdier, S., and Hall, S.: Soluble, light-absorbing species in snow at Barrow, Alaska, J. Geophys. Res., 116, D00R05, https://doi.org/10.1029/2011JD016181, 2011.
Publications Copernicus
Download
Short summary
We have incorporated an idealized snowpack with a nitrate photolysis parameterization into a global chemical transport model (GEOS-Chem) to examine the implications of snow nitrate photolysis for boundary layer chemistry, the recycling and redistribution of reactive nitrogen, and the preservation of ice-core nitrate in ice cores across Antarctica and Greenland. We also examine the sensitivity of these processes to meteorological parameters and chemical, optical, and physical snow properties.
We have incorporated an idealized snowpack with a nitrate photolysis parameterization into a...
Citation