Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 5
Atmos. Chem. Phys., 16, 2803-2817, 2016
https://doi.org/10.5194/acp-16-2803-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 2803-2817, 2016
https://doi.org/10.5194/acp-16-2803-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Mar 2016

Research article | 04 Mar 2016

Estimates of free-tropospheric NO2 and HCHO mixing ratios derived from high-altitude mountain MAX-DOAS observations at midlatitudes and in the tropics

Stefan F. Schreier, Andreas Richter, Folkard Wittrock, and John P. Burrows Stefan F. Schreier et al.
  • Institute of Environmental Physics, University of Bremen, Bremen, Germany

Abstract. In this study, mixing ratios of NO2 (XNO2) and HCHO (XHCHO) in the free troposphere are derived from two multi-axis differential optical absorption spectroscopy (MAX-DOAS) data sets collected at Zugspitze (2650ma.s.l., Germany) and Pico Espejo (4765ma.s.l., Venezuela). The estimation of NO2 and HCHO mixing ratios is based on the modified geometrical approach, which assumes a single-scattering geometry and a scattering point altitude close to the instrument altitude. Firstly, the horizontal optical path length (hOPL) is obtained from O4 differential slant column densities (DSCDs) in the horizontal (0°) and vertical (90°) viewing directions. Secondly, XNO2 and XHCHO are estimated from the NO2 and HCHO DSCDs at the 0° and 90° viewing directions and averaged along the obtained hOPLs. As the MAX-DOAS instrument was performing measurements in the ultraviolet region, wavelength ranges of 346–372 and 338–357nm are selected for the DOAS analysis to retrieve NO2 and HCHO DSCDs, respectively. In order to compare the measured O4 DSCDs and moreover to perform some sensitivity tests, the radiative transfer model SCIATRAN with adapted altitude settings for mountainous terrain is operated to simulate synthetic spectra, on which the DOAS analysis is also applied. The overall agreement between measured and synthetic O4 DSCDs is better for the higher Pico Espejo station than for Zugspitze. Further sensitivity analysis shows that a change in surface albedo (from 0.05 to 0.7) can influence the O4 DSCDs, with a larger absolute difference observed for the horizontal viewing direction. Consequently, the hOPL can vary by about 5% throughout the season, for example when winter snow cover fully disappears in summer. Typical values of hOPLs during clear-sky conditions are 19km (14km) at Zugspitze and 34km (26.5km) at Pico Espejo when using the 346–372 (338–357nm) fitting window. The estimated monthly values of XNO2 (XHCHO), averaged over these hOPLs during clear-sky conditions, are in the range of 60–100ppt (500–950ppt) at Zugspitze and 8.5–15.5ppt (255–385ppt) at Pico Espejo. Interestingly, multi-year-averaged monthly means of XNO2 and XHCHO increase towards the end of the dry season at the Pico Espejo site, suggesting that both trace gases are frequently lifted above the boundary layer as a result of South American biomass burning.

Publications Copernicus
Download
Short summary
Mixing ratios of NO2 and HCHO in the free troposphere are obtained from MAX-DOAS measurements at two mountain stations at midlatitudes and in the tropics using a modified geometrical approach. The method is applied in the UV wavelength range and, thus, allows the detection of HCHO mixing ratios, in addition to NO2. We find that mixing ratios of both species are increased in the tropical free troposphere due to biomass burning.
Mixing ratios of NO2 and HCHO in the free troposphere are obtained from MAX-DOAS measurements at...
Citation
Share