Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 16, issue 4 | Copyright
Atmos. Chem. Phys., 16, 2597-2610, 2016
https://doi.org/10.5194/acp-16-2597-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Mar 2016

Research article | 02 Mar 2016

Formaldehyde production from isoprene oxidation across NOx regimes

G. M. Wolfe1,2, J. Kaiser3, T. F. Hanisco2, F. N. Keutsch4, J. A. de Gouw5,6, J. B. Gilman5,6, M. Graus5,6,a, C. D. Hatch7, J. Holloway5,6, L. W. Horowitz8, B. H. Lee9, B. M. Lerner5,6, F. Lopez-Hilifiker9,b, J. Mao8,11, M. R. Marvin10, J. Peischl5,6, I. B. Pollack5,6, J. M. Roberts6, T. B. Ryerson6, J. A. Thornton9, P. R. Veres5,6, and C. Warneke5,6 G. M. Wolfe et al.
  • 1Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
  • 2Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
  • 3Department of Chemistry, University of Wisconsin–Madison, Madison, WI, USA
  • 4School of Engineering and Applied Sciences and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
  • 5Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
  • 6Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
  • 7Department of Chemistry, Hendrix College, Conway, AR, USA
  • 8NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
  • 9Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
  • 10Department of Chemistry, University of Maryland, College Park, MD, USA
  • 11Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
  • anow at: Institute of Atmospheric and Cryospheric Sciences, Innsbruck University, Innsbruck, Austria
  • bnow at: Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland

Abstract. The chemical link between isoprene and formaldehyde (HCHO) is a strong, nonlinear function of NOx (i.e., NO + NO2). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the southeast US, we quantify HCHO production across the urban–rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a "prompt" yield of HCHO (molecules of HCHO produced per molecule of freshly emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NOx values (roughly 0.1–2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv−1), while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D steady-state box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models underestimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or underestimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NOx values, driven by a 100 % increase in OH and a 40 % increase in branching of organic peroxy radical reactions to produce HCHO.

Download & links
Publications Copernicus
Download
Short summary
This study uses airborne trace gas observations acquired over the southeast US to examine how both natural (isoprene) and anthropogenic (NOx) emissions influence the production of formaldehyde (HCHO). We find a 3-fold increase in HCHO yield between rural and polluted environments. State-of-the-science chemical mechanisms are generally able to reproduce this behavior. These results add confidence to global hydrocarbon emission inventories constrained by spaceborne HCHO observations.
This study uses airborne trace gas observations acquired over the southeast US to examine how...
Citation
Share