Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 16, issue 1
Atmos. Chem. Phys., 16, 239–246, 2016
https://doi.org/10.5194/acp-16-239-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 239–246, 2016
https://doi.org/10.5194/acp-16-239-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Jan 2016

Research article | 18 Jan 2016

Light absorption properties of laboratory-generated tar ball particles

A. Hoffer1, A. Tóth2, I. Nyirő-Kósa1, M. Pósfai2, and A. Gelencsér1,2 A. Hoffer et al.
  • 1MTA-PE Air Chemistry Research Group, Veszprém, P.O. Box 158, 8201, Hungary
  • 2Department of Earth and Environmental Sciences, University of Pannonia, Veszprém, P.O. Box 158, 8201, Hungary

Abstract. Tar balls (TBs) are a specific particle type that is abundant in the global troposphere, in particular in biomass smoke plumes. These particles belong to the family of atmospheric brown carbon (BrC), which can absorb light in the visible range of the solar spectrum. Albeit TBs are typically present as individual particles in biomass smoke plumes, their absorption properties have been only indirectly inferred from field observations or calculations based on their electron energy-loss spectra. This is because in biomass smoke TBs coexist with various other particle types (e.g., organic particles with inorganic inclusions and soot, the latter emitted mainly during flaming conditions) from which they cannot be physically separated; thus, a direct experimental determination of their absorption properties is not feasible. Very recently we have demonstrated that TBs can be generated in the laboratory from droplets of wood tar that resemble atmospheric TBs in all of their observed properties. As a follow-up study, we have installed on-line instruments to our laboratory set-up, which generate pure TB particles to measure the absorption and scattering, as well as the size distribution of the particles. In addition, samples were collected for transmission electron microscopy (TEM) and total carbon (TC) analysis. The effects of experimental parameters were also studied. The mass absorption coefficients of the laboratory-generated TBs were found to be in the range of 0.8–3.0 m2 g−1 at 550 nm, with absorption Ångström exponents (AAE) between 2.7 and 3.4 (average 2.9) in the wavelength range 467–652 nm. The refractive index of TBs as derived from Mie calculations was about 1.84 − 0.21i at 550 nm. In the brown carbon continuum, these values fall closer to those of soot than to other light-absorbing species such as humic-like substances (HULIS). Considering the abundance of TBs in biomass smoke and the global magnitude of biomass burning emissions, these findings may have substantial influence on the understanding of global radiative energy fluxes.

Publications Copernicus
Download
Short summary
Tar balls (TBs) are a specific particle type which is abundant in the global troposphere, in particular in biomass smoke plumes. These particles belong to the family of atmospheric brown carbon (BrC), which can absorb light in the visible range of the solar spectrum. The refractive index of TBs falls much closer to that of soot than of other light-absorbing species such as humic-like substances. These findings may have substantial influence on the understanding of global radiative energy fluxes.
Tar balls (TBs) are a specific particle type which is abundant in the global troposphere, in...
Citation