Articles | Volume 16, issue 4
https://doi.org/10.5194/acp-16-2175-2016
https://doi.org/10.5194/acp-16-2175-2016
Research article
 | 
25 Feb 2016
Research article |  | 25 Feb 2016

Gas–particle partitioning and hydrolysis of organic nitrates formed from the oxidation of α-pinene in environmental chamber experiments

Jeffrey K. Bean and Lea Hildebrandt Ruiz

Related authors

Measurement report: Hygroscopicity of size-selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of chloride aerosol
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024,https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Contributions of primary sources to submicron organic aerosols in Delhi, India
Sahil Bhandari, Zainab Arub, Gazala Habib, Joshua S. Apte, and Lea Hildebrandt Ruiz
Atmos. Chem. Phys., 22, 13631–13657, https://doi.org/10.5194/acp-22-13631-2022,https://doi.org/10.5194/acp-22-13631-2022, 2022
Short summary
Source apportionment resolved by time of day for improved deconvolution of primary source contributions to air pollution
Sahil Bhandari, Zainab Arub, Gazala Habib, Joshua S. Apte, and Lea Hildebrandt Ruiz
Atmos. Meas. Tech., 15, 6051–6074, https://doi.org/10.5194/amt-15-6051-2022,https://doi.org/10.5194/amt-15-6051-2022, 2022
Short summary
Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study
Shahzad Gani, Sahil Bhandari, Kanan Patel, Sarah Seraj, Prashant Soni, Zainab Arub, Gazala Habib, Lea Hildebrandt Ruiz, and Joshua S. Apte
Atmos. Chem. Phys., 20, 8533–8549, https://doi.org/10.5194/acp-20-8533-2020,https://doi.org/10.5194/acp-20-8533-2020, 2020
Short summary
Air mass physiochemical characteristics over New Delhi: impacts on aerosol hygroscopicity and cloud condensation nuclei (CCN) formation
Zainab Arub, Sahil Bhandari, Shahzad Gani, Joshua S. Apte, Lea Hildebrandt Ruiz, and Gazala Habib
Atmos. Chem. Phys., 20, 6953–6971, https://doi.org/10.5194/acp-20-6953-2020,https://doi.org/10.5194/acp-20-6953-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Desorption lifetimes and activation energies influencing gas–surface interactions and multiphase chemical kinetics
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024,https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Molecular analysis of secondary organic aerosol and brown carbon from the oxidation of indole
Feng Jiang, Kyla Siemens, Claudia Linke, Yanxia Li, Yiwei Gong, Thomas Leisner, Alexander Laskin, and Harald Saathoff
Atmos. Chem. Phys., 24, 2639–2649, https://doi.org/10.5194/acp-24-2639-2024,https://doi.org/10.5194/acp-24-2639-2024, 2024
Short summary
Secondary organic aerosol formed by Euro 5 gasoline vehicle emissions: chemical composition and gas-to-particle phase partitioning
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D'Anna
Atmos. Chem. Phys., 24, 2705–2729, https://doi.org/10.5194/acp-24-2705-2024,https://doi.org/10.5194/acp-24-2705-2024, 2024
Short summary
Assessment of the contribution of residential waste burning to ambient PM10 concentrations in Hungary and Romania
András Hoffer, Aida Meiramova, Ádám Tóth, Beatrix Jancsek-Turóczi, Gyula Kiss, Ágnes Rostási, Erika Andrea Levei, Luminita Marmureanu, Attila Machon, and András Gelencsér
Atmos. Chem. Phys., 24, 1659–1671, https://doi.org/10.5194/acp-24-1659-2024,https://doi.org/10.5194/acp-24-1659-2024, 2024
Short summary
Source differences in the components and cytotoxicity of PM2.5 from automobile exhaust, coal combustion, and biomass burning contributing to urban aerosol toxicity
Xiao-San Luo, Weijie Huang, Guofeng Shen, Yuting Pang, Mingwei Tang, Weijun Li, Zhen Zhao, Hanhan Li, Yaqian Wei, Longjiao Xie, and Tariq Mehmood
Atmos. Chem. Phys., 24, 1345–1360, https://doi.org/10.5194/acp-24-1345-2024,https://doi.org/10.5194/acp-24-1345-2024, 2024
Short summary

Cited articles

Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez, J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R., Jayne, J. T., and Worsnop, D. R.: A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data, J. Aerosol Sci., 35, 909–922, https://doi.org/10.1016/j.jaerosci.2004.02.007, 2004.
Baker, J. and Easty, D.: Hydrolysis of Organic Nitrates, Nature, 166, 156–156, https://doi.org/10.1038/166156a0, 1950.
Baker, J. and Easty, D.: Hydrolylic Decomposition of Esters of Nitric Acid .1. General Experimental Techniques – Alkaline Hydrolysis and Neutral Solvolysis of Methyl, Ethyl, Isopropyl, and Tert-Butyl Nitrates in Aqueous Alcohol, J. Chem. Soc., 1952, 1193–1207, https://doi.org/10.1039/jr9520001193, 1952.
Boschan, R., Merrow, R. T., and Van Dolah, R. W.: The Chemistry of Nitrate Esters, Chem. Rev., 55, 485–510, https://doi.org/10.1021/cr50003a001, 1955.
Download
Short summary
The fate of organic nitrates influences their role as sinks and sources of NOx and their effects on the formation of tropospheric ozone and organic aerosol. Organic nitrates were formed from the photo-oxidation of α-pinene in environmental chamber experiments. Results on partitioning and hydrolysis of organic nitrates from this work could be implemented in chemical transport models to more accurately represent the fate of NOx and the formation of ozone and particulate matter.
Altmetrics
Final-revised paper
Preprint