Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 16, issue 1
Atmos. Chem. Phys., 16, 215–238, 2016
https://doi.org/10.5194/acp-16-215-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 215–238, 2016
https://doi.org/10.5194/acp-16-215-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Jan 2016

Research article | 18 Jan 2016

Effects of emission reductions on organic aerosol in the southeastern United States

C. L. Blanchard1, G. M. Hidy2, S. Shaw3, K. Baumann4, and E. S. Edgerton4 C. L. Blanchard et al.
  • 1Envair, Albany, CA, USA
  • 2Envair/Aerochem, Placitas, NM, USA
  • 3Environmental Sector, Electric Power Research Institute, Palo Alto, CA, USA
  • 4Atmospheric Research and Analysis, Cary, NC, USA

Abstract. Long-term (1999 to 2013) data from the Southeastern Aerosol Research and Characterization (SEARCH) network are used to show that anthropogenic emission reductions led to important decreases in fine-particle organic aerosol (OA) concentrations in the southeastern US On average, 45 % (range 25 to 63 %) of the 1999 to 2013 mean organic carbon (OC) concentrations are attributed to combustion processes, including fossil fuel use and biomass burning, through associations of measured OC with combustion products such as elemental carbon (EC), carbon monoxide (CO), and nitrogen oxides (NOx). The 2013 mean combustion-derived OC concentrations were 0.5 to 1.4 µg m−3 at the five sites operating in that year. Mean annual combustion-derived OC concentrations declined from 3.8 ± 0.2 µg m−3 (68 % of total OC) to 1.4 ± 0.1 µg m−3 (60 % of total OC) between 1999 and 2013 at the urban Atlanta, Georgia, site (JST) and from 2.9 ± 0.4 µg m−3 (39 % of total OC) to 0.7 ± 0.1 µg m−3 (30 % of total OC) between 2001 and 2013 at the urban Birmingham, Alabama (BHM), site. The urban OC declines coincide with reductions of motor vehicle emissions between 2006 and 2010, which may have decreased mean OC concentrations at the urban SEARCH sites by > 2 µg m−3. BHM additionally exhibits a decline in OC associated with SO2 from 0.4 ± 0.04 µg m−3 in 2001 to 0.2 ± 0.03 µg m−3 in 2013, interpreted as the result of reduced emissions from industrial sources within the city. Analyses using non-soil potassium as a biomass burning tracer indicate that biomass burning OC occurs throughout the year at all sites. All eight SEARCH sites show an association of OC with sulfate (SO4) ranging from 0.3 to 1.0 µg m−3 on average, representing  ∼  25 % of the 1999 to 2013 mean OC concentrations. Because the mass of OC identified with SO4 averages 20 to 30 % of the SO4 concentrations, the mean SO4-associated OC declined by  ∼  0.5 to 1 µg m−3 as SO4 concentrations decreased throughout the SEARCH region. The 2013 mean SO4 concentrations of 1.7 to 2.0 µg m−3 imply that future decreases in mean SO4-associated OC concentrations would not exceed  ∼  0.3 to 0.5 µg m−3. Seasonal OC concentrations, largely identified with ozone (O3), vary from 0.3 to 1.4 µg m−3 ( ∼  20 % of the total OC concentrations).

Publications Copernicus
Download
Short summary
Fifteen years of gas and particle measurements at eight monitoring sites comprising the Southeastern Aerosol Research and Characterization (SEARCH) network offer insights into the sources of organic aerosol in the southeastern United States. Between 1999 and 2013, mean organic aerosol concentrations declined due to decreasing particle emissions from motor vehicles and to less secondary organic aerosol with declining emissions of sulfur dioxide, nitrogen oxides, and volatile organic compounds.
Fifteen years of gas and particle measurements at eight monitoring sites comprising the...
Citation