Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 16, issue 23
Atmos. Chem. Phys., 16, 15277-15299, 2016
https://doi.org/10.5194/acp-16-15277-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 15277-15299, 2016
https://doi.org/10.5194/acp-16-15277-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Dec 2016

Research article | 09 Dec 2016

Atmospheric aerosols in Rome, Italy: sources, dynamics and spatial variations during two seasons

Caroline Struckmeier1, Frank Drewnick1, Friederike Fachinger1, Gian Paolo Gobbi2, and Stephan Borrmann1,3 Caroline Struckmeier et al.
  • 1Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • 2Institute of Atmospheric Sciences and Climate, ISAC-CNR, Rome, Italy
  • 3Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany

Abstract. Investigations on atmospheric aerosols and their sources were carried out in October/November 2013 and May/June 2014 consecutively in a suburban area of Rome (Tor Vergata) and in central Rome (near St Peter's Basilica). During both years a Saharan dust advection event temporarily increased PM10 concentrations at ground level by about 12–17µgm−3. Generally, in October/November the ambient aerosol was more strongly influenced by primary emissions, whereas higher relative contributions of secondary particles (sulfate, aged organic aerosol) were found in May/June. Absolute concentrations of anthropogenic emission tracers (e.g. NOx, CO2, particulate polycyclic aromatic hydrocarbons, traffic-related organic aerosol) were generally higher at the urban location. Positive matrix factorization was applied to the PM1 organic aerosol (OA) fraction of aerosol mass spectrometer (HR-ToF-AMS) data to identify different sources of primary OA (POA): traffic, cooking, biomass burning and (local) cigarette smoking. While biomass burning OA was only found at the suburban site, where it accounted for the major fraction of POA (18–24% of total OA), traffic and cooking were more dominant sources at the urban site. A particle type associated with cigarette smoke emissions, which is associated with a potential characteristic marker peak (mz84, C5H10N+, a nicotine fragment) in the mass spectrum, was only found in central Rome, where it was emitted in close vicinity to the measurement location. Regarding secondary OA, in October/November, only a very aged, regionally advected oxygenated OA was found, which contributed 42–53% to the total OA. In May/June total oxygenated OA accounted for 56–76% of the OA. Here a fraction (18–26% of total OA) of a fresher, less oxygenated OA of more local origin was also observed. New particle formation events were identified from measured particle number concentrations and size distributions in May/June 2014 at both sites. While they were observed every day at the urban location, at the suburban location they were only found under favourable meteorological conditions, but were independent of advection of the Rome emission plume. Particles from sources in the metropolitan area of Rome and particles advected from outside Rome contributed 42–70 and 30–58% to the total measured PM1, respectively. Apart from the general aerosol characteristics, in this study the properties (e.g. emission strength) and dynamics (e.g. temporal behaviour) of each identified aerosol type is investigated in detail to provide a better understanding of the observed seasonal and spatial differences.

Publications Copernicus
Download
Short summary
The characteristics of ambient aerosol during two seasons (spring/autumn) and at two locations (suburban/urban) in Rome were investigated. We distinguished regionally advected and locally produced organic aerosols, including from cooking, traffic and biomass burning, but also from locally emitted cigarette smoke, for which we propose a new marker peak for identification in aerosol mass spectra. The impact of Saharan dust advection events on local aerosol concentration was studied.
The characteristics of ambient aerosol during two seasons (spring/autumn) and at two locations...
Citation
Share