Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year
    5.689
  • CiteScore value: 5.44 CiteScore
    5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 161 Scimago H
    index 161
Volume 16, issue 22
Atmos. Chem. Phys., 16, 14687-14702, 2016
https://doi.org/10.5194/acp-16-14687-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 14687-14702, 2016
https://doi.org/10.5194/acp-16-14687-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Nov 2016

Research article | 24 Nov 2016

Wildfire influences on the variability and trend of summer surface ozone in the mountainous western United States

Xiao Lu1, Lin Zhang1, Xu Yue2, Jiachen Zhang3, Daniel A. Jaffe4,5, Andreas Stohl6, Yuanhong Zhao1, and Jingyuan Shao1 Xiao Lu et al.
  • 1Laboratory for Climate and Ocean–Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
  • 2Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
  • 3Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
  • 4School of Science, Technology, Engineering and Math, University of Washington Bothell, Bothell, WA 98011, USA
  • 5Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
  • 6Norwegian Institute for Air Research, 2007 Kjeller, Norway

Abstract. Increasing wildfire activities in the mountainous western US may present a challenge for the region to attain a recently revised ozone air quality standard in summer. Using current Eulerian chemical transport models to examine the wildfire ozone influences is difficult due to uncertainties in fire emissions, inadequate model chemistry, and resolution. Here we quantify the wildfire influence on the ozone variability, trends, and number of high MDA8 (daily maximum 8h average) ozone days over this region in summers (June, July, and August) 1989–2010 using a new approach. We define a fire index using retroplumes (plumes of back-trajectory particles) computed by a Lagrangian dispersion model (FLEXPART) and develop statistical models based on the fire index and meteorological parameters to interpret MDA8 ozone concentrations measured at 13 Intermountain West surface sites. We show that the statistical models are able to capture the ozone enhancements by wildfires and give results with some features different from the GEOS-Chem Eulerian chemical transport model. Wildfires enhance the Intermountain West regional summer mean MDA8 ozone by 0.3–1.5ppbv (daily episodic enhancements reach 10–20ppbv at individual sites) with large interannual variability, which are strongly correlated with the total MDA8 ozone. We find large fire impacts on the number of exceedance days; for the 13 CASTNet sites, 31% of the summer days with MDA8 ozone exceeding 70ppbv would not occur in the absence of wildfires.

Publications Copernicus
Download
Short summary
Increasing wildfire activities in the mountainous western US may present a challenge for the region to attain a recently revised ozone air quality standard in summer. We quantify the wildfire influence on the ozone variability, trends, and number of high ozone days over this region in summers 1989–2010 using a Lagrangian dispersion model and statistical regression models.
Increasing wildfire activities in the mountainous western US may present a challenge for the...
Citation
Share