Articles | Volume 16, issue 22
https://doi.org/10.5194/acp-16-14599-2016
https://doi.org/10.5194/acp-16-14599-2016
Research article
 | 
23 Nov 2016
Research article |  | 23 Nov 2016

Assessing the sensitivity of the hydroxyl radical to model biases in composition and temperature using a single-column photochemical model for Lauder, New Zealand

Laura López-Comí, Olaf Morgenstern, Guang Zeng, Sarah L. Masters, Richard R. Querel, and Gerald E. Nedoluha

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Olaf Morgenstern on behalf of the Authors (07 Oct 2016)  Author's response    Manuscript
ED: Publish as is (02 Nov 2016) by William Bloss
AR by Olaf Morgenstern on behalf of the Authors (03 Nov 2016)  Author's response    Manuscript
Download
Short summary
The hydroxyl radical (OH) is known for removing various pollutants from the atmosphere. Chemistry–climate models disagree on how much OH is found in the atmosphere. Here we use a single column model, set up for Lauder (New Zealand), to assess how OH responds to correcting model biases in long-lived constituents and temperature. We find some considerable sensitivity to correcting water vapour and ozone, with lesser contributions due to correcting methane, carbon monoxide, and temperature.
Altmetrics
Final-revised paper
Preprint