Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 22
Atmos. Chem. Phys., 16, 14495–14513, 2016
https://doi.org/10.5194/acp-16-14495-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 14495–14513, 2016
https://doi.org/10.5194/acp-16-14495-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Nov 2016

Research article | 23 Nov 2016

Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

Benjamin S. Grandey et al.

Related authors

Impacts on cloud radiative effects induced by coexisting aerosols converted from international shipping and maritime DMS emissions
Qinjian Jin, Benjamin S. Grandey, Daniel Rothenberg, Alexander Avramov, and Chien Wang
Atmos. Chem. Phys., 18, 16793–16808, https://doi.org/10.5194/acp-18-16793-2018,https://doi.org/10.5194/acp-18-16793-2018, 2018
Short summary
Effective radiative forcing in the aerosol–climate model CAM5.3-MARC-ARG
Benjamin S. Grandey, Daniel Rothenberg, Alexander Avramov, Qinjian Jin, Hsiang-He Lee, Xiaohong Liu, Zheng Lu, Samuel Albani, and Chien Wang
Atmos. Chem. Phys., 18, 15783–15810, https://doi.org/10.5194/acp-18-15783-2018,https://doi.org/10.5194/acp-18-15783-2018, 2018
Short summary
The contribution of the strength and structure of extratropical cyclones to observed cloud–aerosol relationships
B. S. Grandey, P. Stier, R. G. Grainger, and T. M. Wagner
Atmos. Chem. Phys., 13, 10689–10701, https://doi.org/10.5194/acp-13-10689-2013,https://doi.org/10.5194/acp-13-10689-2013, 2013
Investigating relationships between aerosol optical depth and cloud fraction using satellite, aerosol reanalysis and general circulation model data
B. S. Grandey, P. Stier, and T. M. Wagner
Atmos. Chem. Phys., 13, 3177–3184, https://doi.org/10.5194/acp-13-3177-2013,https://doi.org/10.5194/acp-13-3177-2013, 2013

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Wintertime new particle formation and its contribution to cloud condensation nuclei in the Northeastern United States
Fangqun Yu, Gan Luo, Arshad Arjunan Nair, James J. Schwab, James P. Sherman, and Yanda Zhang
Atmos. Chem. Phys., 20, 2591–2601, https://doi.org/10.5194/acp-20-2591-2020,https://doi.org/10.5194/acp-20-2591-2020, 2020
Short summary
Relative effects of open biomass burning and open crop straw burning on haze formation over central and eastern China: modeling study driven by constrained emissions
Khalid Mehmood, Yujie Wu, Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Weiping Liu, Yuesi Wang, Zirui Liu, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 2419–2443, https://doi.org/10.5194/acp-20-2419-2020,https://doi.org/10.5194/acp-20-2419-2020, 2020
Short summary
Incorporation of pollen data in source maps is vital for pollen dispersion models
Alexander Kurganskiy, Carsten Ambelas Skjøth, Alexander Baklanov, Mikhail Sofiev, Annika Saarto, Elena Severova, Sergei Smyshlyaev, and Eigil Kaas
Atmos. Chem. Phys., 20, 2099–2121, https://doi.org/10.5194/acp-20-2099-2020,https://doi.org/10.5194/acp-20-2099-2020, 2020
Short summary
Modeling the global radiative effect of brown carbon: a potentially larger heating source in the tropical free troposphere than black carbon
Aoxing Zhang, Yuhang Wang, Yuzhong Zhang, Rodney J. Weber, Yongjia Song, Ziming Ke, and Yufei Zou
Atmos. Chem. Phys., 20, 1901–1920, https://doi.org/10.5194/acp-20-1901-2020,https://doi.org/10.5194/acp-20-1901-2020, 2020
Short summary
FLEXPART v10.1 simulation of source contributions to Arctic black carbon
Chunmao Zhu, Yugo Kanaya, Masayuki Takigawa, Kohei Ikeda, Hiroshi Tanimoto, Fumikazu Taketani, Takuma Miyakawa, Hideki Kobayashi, and Ignacio Pisso
Atmos. Chem. Phys., 20, 1641–1656, https://doi.org/10.5194/acp-20-1641-2020,https://doi.org/10.5194/acp-20-1641-2020, 2020
Short summary

Cited articles

Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V., and Welton, E. J.: Reduction of Tropical Cloudiness by Soot, Science, 288, 1042–1047, https://doi.org/10.1126/science.288.5468.1042, 2000.
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–30, https://doi.org/10.1126/science.245.4923.1227, 1989.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon, Science, 303, 1337–42, https://doi.org/10.1126/science.1092779, 2004.
Bala, G., Caldeira, K., and Nemani, R.: Fast versus slow response in climate change: implications for the global hydrological cycle, Clim. Dynam., 35, 423–434, https://doi.org/10.1007/s00382-009-0583-y, 2010.
Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J. R. Stat. Soc. B, 57, 289–300, 1995.
Publications Copernicus
Download
Short summary
Wildfires emit organic carbon aerosols, small particles suspended in the atmosphere. These aerosols may cool the climate system via interactions with sunlight and clouds. We have used a global climate model to investigate the cooling effects of these aerosols. We find that ignoring interannual variability of the emissions may lead to an overestimation of the cooling effect of the aerosols emitted by fires.
Wildfires emit organic carbon aerosols, small particles suspended in the atmosphere. These...
Citation