Articles | Volume 16, issue 22
https://doi.org/10.5194/acp-16-14249-2016
https://doi.org/10.5194/acp-16-14249-2016
Research article
 | 
16 Nov 2016
Research article |  | 16 Nov 2016

Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment

Shuaiqi Tang, Shaocheng Xie, Yunyan Zhang, Minghua Zhang, Courtney Schumacher, Hannah Upton, Michael P. Jensen, Karen L. Johnson, Meng Wang, Maike Ahlgrimm, Zhe Feng, Patrick Minnis, and Mandana Thieman

Related authors

Understanding Aerosol-Cloud Interactions in a Single-Column Model: Intercomparison with Process-Level Models and Evaluation against ACTIVATE Field Measurements
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
EGUsphere, https://doi.org/10.5194/egusphere-2023-3149,https://doi.org/10.5194/egusphere-2023-3149, 2024
Short summary
Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 2: assessing aerosols, clouds, and aerosol–cloud interactions via field campaign and long-term observations
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023,https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
Evaluation of liquid cloud albedo susceptibility in E3SM using coupled eastern North Atlantic surface and satellite retrievals
Adam C. Varble, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Shuaiqi Tang, and Jerome Fast
Atmos. Chem. Phys., 23, 13523–13553, https://doi.org/10.5194/acp-23-13523-2023,https://doi.org/10.5194/acp-23-13523-2023, 2023
Short summary
Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 1: assessing E3SM aerosol predictions using aircraft, ship, and surface measurements
Shuaiqi Tang, Jerome D. Fast, Kai Zhang, Joseph C. Hardin, Adam C. Varble, John E. Shilling, Fan Mei, Maria A. Zawadowicz, and Po-Lun Ma
Geosci. Model Dev., 15, 4055–4076, https://doi.org/10.5194/gmd-15-4055-2022,https://doi.org/10.5194/gmd-15-4055-2022, 2022
Short summary
The E3SM version 1 single-column model
Peter A. Bogenschutz, Shuaiqi Tang, Peter M. Caldwell, Shaocheng Xie, Wuyin Lin, and Yao-Sheng Chen
Geosci. Model Dev., 13, 4443–4458, https://doi.org/10.5194/gmd-13-4443-2020,https://doi.org/10.5194/gmd-13-4443-2020, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and cloud radiative forcing
Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni
Atmos. Chem. Phys., 24, 613–630, https://doi.org/10.5194/acp-24-613-2024,https://doi.org/10.5194/acp-24-613-2024, 2024
Short summary
Role of thermodynamic and turbulence processes on the fog life cycle during SOFOG3D experiment
Cheikh Dione, Martial Haeffelin, Frédéric Burnet, Christine Lac, Guylaine Canut, Julien Delanoë, Jean-Charles Dupont, Susana Jorquera, Pauline Martinet, Jean-François Ribaud, and Felipe Toledo
Atmos. Chem. Phys., 23, 15711–15731, https://doi.org/10.5194/acp-23-15711-2023,https://doi.org/10.5194/acp-23-15711-2023, 2023
Short summary
Thermodynamic and cloud evolution in a cold air outbreak during HALO-(AC)3: Quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses
Benjamin Kirbus, Imke Schirmacher, Marcus Klingebiel, Michael Schäfer, André Ehrlich, Nils Slättberg, Johannes Lucke, Manuel Moser, Hanno Müller, and Manfred Wendisch
EGUsphere, https://doi.org/10.5194/egusphere-2023-2989,https://doi.org/10.5194/egusphere-2023-2989, 2023
Short summary
Characterizing the near-global cloud vertical structures over land using high-resolution radiosonde measurements
Hui Xu, Jianping Guo, Bing Tong, Jinqiang Zhang, Tianmeng Chen, Xiaoran Guo, Jian Zhang, and Wenqing Chen
Atmos. Chem. Phys., 23, 15011–15038, https://doi.org/10.5194/acp-23-15011-2023,https://doi.org/10.5194/acp-23-15011-2023, 2023
Short summary
Powering aircraft with 100% sustainable aviation fuel reduces ice crystals in contrails
Raphael Satoru Märkl, Christiane Voigt, Daniel Sauer, Rebecca Katharina Dischl, Stefan Kaufmann, Theresa Harlaß, Valerian Hahn, Anke Roiger, Cornelius Weiß-Rehm, Ulrike Burkhardt, Ulrich Schumann, Andreas Marsing, Monika Scheibe, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Reetu Sallinen, Tobias Schripp, and Patrick Le Clercq
EGUsphere, https://doi.org/10.5194/egusphere-2023-2638,https://doi.org/10.5194/egusphere-2023-2638, 2023
Short summary

Cited articles

Ahmed, F., Schumacher, C., Feng, Z., and Hagos, S.: A Retrieval of Tropical Latent Heating Using the 3D Structure of Precipitation Features, J. Appl. Meteorol. Clim., 55, 1965–1982, https://doi.org/10.1175/JAMC-D-15-0038.1, 2016.
Atmospheric Radiation Measurement (ARM) Climate Research Facility, updated hourly. Radiative Flux Analysis (RADFLUX1LONG). 2014-02-15 to 2014-10-10, 3.21297 S 60.5981 W: ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Long, C., Gaustad, K., and Riihimaki, L., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, last access: 9 March 2016 at https://doi.org/10.5439/1179822, 1994.
Atmospheric Radiation Measurement (ARM) Climate Research Facility, updated monthly. SCM-Forcing DATA from variational analysis (VARANAL). 2014-02-18 to 2014-10-10, 3.21297 S 60.5981 W: ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: Tang, S., Xie, S., and Zhang, Y., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, last access: 22 July 2016 at https://doi.org/10.5439/1273323, 2001.
Atmospheric Radiation Measurement (ARM) Climate Research Facility, updated hourly. Quality Controlled Eddy Correlation Flux Measurement (30QCECOR). 2014-02-15 to 2014-10-10, 3.21297 S 60.5981 W: ARM Mobile Facility (MAO) Manacapuru, Amazonas, Brazil; AMF1 (M1), compiled by: McCoy, R., Zhang, Y., and Xie, S., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, last access: 22 March 2016 at https://doi.org/10.5439/1097546, 2003.
Burleyson, C. D., Feng, Z., Hagos, S. M., Fast, J., Machado, L. A. T., and Martin, S. T.: Spatial Variability of the Background Diurnal Cycle of Deep Convection around the GoAmazon2014/5 Field Campaign Sites, J. Appl. Meteor. Climatol., 55, 1579–1598, https://doi.org/10.1175/JAMC-D-15-0229.1, 2016.
Download
Short summary
Data observed during the Green Ocean Amazon (GoAmazon2014/5) experiment are used to derive the large-scale fields in this study. The morning propagating convective systems are active during the wet season but rare during the dry season. The afternoon convections are active in both seasons, with heating and moistening in the lower level corresponding to the vertical convergence of eddy fluxes. Case study shows distinguish large-scale environments for three types of convective systems in Amazonia.
Altmetrics
Final-revised paper
Preprint