Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 21
Atmos. Chem. Phys., 16, 14003-14024, 2016
https://doi.org/10.5194/acp-16-14003-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 14003-14024, 2016
https://doi.org/10.5194/acp-16-14003-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Nov 2016

Research article | 11 Nov 2016

Seasonal variability of stratospheric methane: implications for constraining tropospheric methane budgets using total column observations

Katherine M. Saad et al.
Viewed  
Total article views: 1,655 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
900 720 35 1,655 46 46
  • HTML: 900
  • PDF: 720
  • XML: 35
  • Total: 1,655
  • BibTeX: 46
  • EndNote: 46
Views and downloads (calculated since 10 May 2016)
Cumulative views and downloads (calculated since 10 May 2016)
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 26 Jun 2019
Publications Copernicus
Download
Short summary
Current approaches to constrain the global methane budget assimilate total column measurements into models, but model biases can impact results. We use tropospheric methane columns to evaluate model transport errors and identify a seasonal time lag in the Northern Hemisphere troposphere masked by stratospheric compensating effects. We find systematic biases in the stratosphere will alias into model-derived emissions estimates, especially those in the high Northern latitudes that vary seasonally.
Current approaches to constrain the global methane budget assimilate total column measurements...
Citation