Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 20
Atmos. Chem. Phys., 16, 13291–13307, 2016
https://doi.org/10.5194/acp-16-13291-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Pan-Eurasian Experiment (PEEX)

Atmos. Chem. Phys., 16, 13291–13307, 2016
https://doi.org/10.5194/acp-16-13291-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Oct 2016

Research article | 28 Oct 2016

Simple proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site

Jenni Kontkanen1, Pauli Paasonen1, Juho Aalto2,3, Jaana Bäck3, Pekka Rantala1, Tuukka Petäjä1, and Markku Kulmala1 Jenni Kontkanen et al.
  • 1Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
  • 2Hyytiälä Forestry Field Station, Hyytiäläntie 124, 35500 Korkeakoski, Finland
  • 3Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland

Abstract. The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available on decadal timescales, and the direct measurements of the concentrations of monoterpene oxidation product have so far been scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS) during 2006–2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle, with a maximum in summer and a minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environments.

Publications Copernicus
Download
Short summary
We developed proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, Finland. The proxies for the monoterpene concentration include temperature-controlled emissions, dilution and different oxidation processes. The proxies were observed to capture the seasonal and diurnal variation of the monoterpene concentration reasonably well. Our proxies can be used in the analysis of new particle formation and growth in boreal environments.
We developed proxies for estimating the concentrations of monoterpenes and their oxidation...
Citation