Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 20
Atmos. Chem. Phys., 16, 13067–13080, 2016
https://doi.org/10.5194/acp-16-13067-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 13067–13080, 2016
https://doi.org/10.5194/acp-16-13067-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Oct 2016

Research article | 21 Oct 2016

The role of methane in projections of 21st century stratospheric water vapour

Laura E. Revell et al.

Related authors

A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1
Julie M. Nicely, Bryan N. Duncan, Thomas F. Hanisco, Glenn M. Wolfe, Ross J. Salawitch, Makoto Deushi, Amund S. Haslerud, Patrick Jöckel, Béatrice Josse, Douglas E. Kinnison, Andrew Klekociuk, Michael E. Manyin, Virginie Marécal, Olaf Morgenstern, Lee T. Murray, Gunnar Myhre, Luke D. Oman, Giovanni Pitari, Andrea Pozzer, Ilaria Quaglia, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Kane Stone, Susan Strahan, Simone Tilmes, Holger Tost, Daniel M. Westervelt, and Guang Zeng
Atmos. Chem. Phys., 20, 1341–1361, https://doi.org/10.5194/acp-20-1341-2020,https://doi.org/10.5194/acp-20-1341-2020, 2020
Short summary
Attribution of Chemistry-Climate Model Initiative (CCMI) ozone radiative flux bias from satellites
Le Kuai, Kevin W. Bowman, Kazuyuki Miyazaki, Makoto Deushi, Laura Revell, Eugene Rozanov, Fabien Paulot, Sarah Strode, Andrew Conley, Jean-François Lamarque, Patrick Jöckel, David A. Plummer, Luke D. Oman, Helen Worden, Susan Kulawik, David Paynter, Andrea Stenke, and Markus Kunze
Atmos. Chem. Phys., 20, 281–301, https://doi.org/10.5194/acp-20-281-2020,https://doi.org/10.5194/acp-20-281-2020, 2020
Short summary
The sensitivity of Southern Ocean aerosols and cloud microphysics to sea spray and sulfate aerosol production in the HadGEM3-GA7.1 chemistry–climate model
Laura E. Revell, Stefanie Kremser, Sean Hartery, Mike Harvey, Jane P. Mulcahy, Jonny Williams, Olaf Morgenstern, Adrian J. McDonald, Vidya Varma, Leroy Bird, and Alex Schuddeboom
Atmos. Chem. Phys., 19, 15447–15466, https://doi.org/10.5194/acp-19-15447-2019,https://doi.org/10.5194/acp-19-15447-2019, 2019
Short summary
Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Didier A. Hauglustaine, Sophie Szopa, Ann R. Stavert, Nathan Luke Abraham, Alex T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Béatrice Josse, Douglas Kinnison, Ole Kirner, Virginie Marécal, Fiona M. O'Connor, David A. Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019,https://doi.org/10.5194/acp-19-13701-2019, 2019
Short summary
The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models
Andreas Chrysanthou, Amanda C. Maycock, Martyn P. Chipperfield, Sandip Dhomse, Hella Garny, Douglas Kinnison, Hideharu Akiyoshi, Makoto Deushi, Rolando R. Garcia, Patrick Jöckel, Oliver Kirner, Giovanni Pitari, David A. Plummer, Laura Revell, Eugene Rozanov, Andrea Stenke, Taichu Y. Tanaka, Daniele Visioni, and Yousuke Yamashita
Atmos. Chem. Phys., 19, 11559–11586, https://doi.org/10.5194/acp-19-11559-2019,https://doi.org/10.5194/acp-19-11559-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Technical note: Intermittent reduction of the stratospheric ozone over northern Europe caused by a storm in the Atlantic Ocean
Mikhail Sofiev, Rostislav Kouznetsov, Risto Hänninen, and Viktoria F. Sofieva
Atmos. Chem. Phys., 20, 1839–1847, https://doi.org/10.5194/acp-20-1839-2020,https://doi.org/10.5194/acp-20-1839-2020, 2020
Short summary
Possible implications of enhanced chlorofluorocarbon-11 concentrations on ozone
Martin Dameris, Patrick Jöckel, and Matthias Nützel
Atmos. Chem. Phys., 19, 13759–13771, https://doi.org/10.5194/acp-19-13759-2019,https://doi.org/10.5194/acp-19-13759-2019, 2019
Short summary
Technical note: Reanalysis of Aura MLS chemical observations
Quentin Errera, Simon Chabrillat, Yves Christophe, Jonas Debosscher, Daan Hubert, William Lahoz, Michelle L. Santee, Masato Shiotani, Sergey Skachko, Thomas von Clarmann, and Kaley Walker
Atmos. Chem. Phys., 19, 13647–13679, https://doi.org/10.5194/acp-19-13647-2019,https://doi.org/10.5194/acp-19-13647-2019, 2019
Short summary
Separating the role of direct radiative heating and photolysis in modulating the atmospheric response to the amplitude of the 11-year solar cycle forcing
Ewa M. Bednarz, Amanda C. Maycock, Peter Braesicke, Paul J. Telford, N. Luke Abraham, and John A. Pyle
Atmos. Chem. Phys., 19, 9833–9846, https://doi.org/10.5194/acp-19-9833-2019,https://doi.org/10.5194/acp-19-9833-2019, 2019
Short summary
Reactive nitrogen (NOy) and ozone responses to energetic electron precipitation during Southern Hemisphere winter
Pavle Arsenovic, Alessandro Damiani, Eugene Rozanov, Bernd Funke, Andrea Stenke, and Thomas Peter
Atmos. Chem. Phys., 19, 9485–9494, https://doi.org/10.5194/acp-19-9485-2019,https://doi.org/10.5194/acp-19-9485-2019, 2019
Short summary

Cited articles

Arfeuille, F., Luo, B. P., Heckendorn, P., Weisenstein, D., Sheng, J. X., Rozanov, E., Schraner, M., Brönnimann, S., Thomason, L. W., and Peter, T.: Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions, Atmos. Chem. Phys., 13, 11221–11234, https://doi.org/10.5194/acp-13-11221-2013, 2013.
Austin, J., Wilson, J., and Li, F.: Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry-climate model simulations, J. Atmos. Sci., 64, 905–921, https://doi.org/10.1175/JAS3866.1, 2007.
Bates, D. R. and Nicolet, M.: Atmospheric hydrogen, Publ. Astron. Soc. Pac., 62, 106–110, 1950.
Bekki, S., Rap, A., Poulain, V., Dhomse, S., Marchand, M., Lefevre, F., Forster, P. M., Szopa, S., and Chipperfield, M. P.: Climate impact of stratospheric ozone recovery, Geophys. Res. Lett., 40, 2796–2800, https://doi.org/10.1002/grl.50358, 2013.
Brasseur, G. and Solomon, S.: Composition and Chemistry, in: Aeronomy of the Middle Atmosphere, 3rd Edn., Springer, Dordrecht, Netherlands, 265–422, 2005.
Publications Copernicus
Download
Short summary
Water vapour in the stratosphere plays an important role in atmospheric chemistry and the Earth's radiative balance. We have analysed trends in stratospheric water vapour through the 21st century as simulated by a coupled chemistry–climate model following a range of greenhouse gas emission scenarios. We have also quantified the contribution that methane oxidation in the stratosphere makes to projected water vapour trends.
Water vapour in the stratosphere plays an important role in atmospheric chemistry and the...
Citation