Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 16, issue 20 | Copyright
Atmos. Chem. Phys., 16, 13067-13080, 2016
https://doi.org/10.5194/acp-16-13067-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Oct 2016

Research article | 21 Oct 2016

The role of methane in projections of 21st century stratospheric water vapour

Laura E. Revell1,2, Andrea Stenke2, Eugene Rozanov2,3, William Ball2,3, Stefan Lossow4, and Thomas Peter2 Laura E. Revell et al.
  • 1Bodeker Scientific, Christchurch, New Zealand
  • 2Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
  • 3Physical-Meteorological Observatory/World Radiation Center, Davos, Switzerland
  • 4Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract. Stratospheric water vapour (SWV) is an important component of the Earth's atmosphere as it affects both radiative balance and the chemistry of the atmosphere. Key processes driving changes in SWV include dehydration of air masses transiting the cold-point tropopause (CPT) and methane oxidation. We use a chemistry–climate model to simulate changes in SWV through the 21st century following the four canonical representative concentration pathways (RCPs). Furthermore, we quantify the contribution that methane oxidation makes to SWV following each of the RCPs. Although the methane contribution to SWV maximizes in the upper stratosphere, modelled SWV trends are found to be driven predominantly by warming of the CPT rather than by increasing methane oxidation. SWV changes by −5 to 60% (depending on the location in the atmosphere and emissions scenario) and increases in the lower stratosphere in all RCPs through the 21st century. Because the lower stratosphere is where water vapour radiative forcing maximizes, SWV's influence on surface climate is also expected to increase through the 21st century.

Download & links
Publications Copernicus
Download
Short summary
Water vapour in the stratosphere plays an important role in atmospheric chemistry and the Earth's radiative balance. We have analysed trends in stratospheric water vapour through the 21st century as simulated by a coupled chemistry–climate model following a range of greenhouse gas emission scenarios. We have also quantified the contribution that methane oxidation in the stratosphere makes to projected water vapour trends.
Water vapour in the stratosphere plays an important role in atmospheric chemistry and the...
Citation
Share