Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 20
Atmos. Chem. Phys., 16, 13049–13066, 2016
https://doi.org/10.5194/acp-16-13049-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 13049–13066, 2016
https://doi.org/10.5194/acp-16-13049-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Oct 2016

Research article | 21 Oct 2016

Quantifying horizontal and vertical tracer mass fluxes in an idealized valley during daytime

Daniel Leukauf et al.

Related authors

The impact of a forest parametrization on coupled WRF-CFD simulations during the passage of a cold front over the WINSENT test-site
Daniel Leukauf, Asmae El-Bahlouli, Kjell zum Berge, Martin Schön, Hermann Knaus, and Jens Bange
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-68,https://doi.org/10.5194/wes-2019-68, 2019
Revised manuscript not accepted
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Atmospheric teleconnection processes linking winter air stagnation and haze extremes in China with regional Arctic sea ice decline
Yufei Zou, Yuhang Wang, Zuowei Xie, Hailong Wang, and Philip J. Rasch
Atmos. Chem. Phys., 20, 4999–5017, https://doi.org/10.5194/acp-20-4999-2020,https://doi.org/10.5194/acp-20-4999-2020, 2020
Short summary
Dehydration and low ozone in the tropopause layer over the Asian monsoon caused by tropical cyclones: Lagrangian transport calculations using ERA-Interim and ERA5 reanalysis data
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Felix Ploeger, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 20, 4133–4152, https://doi.org/10.5194/acp-20-4133-2020,https://doi.org/10.5194/acp-20-4133-2020, 2020
Short summary
Characterization of the air–sea exchange mechanisms during a Mediterranean heavy precipitation event using realistic sea state modelling
César Sauvage, Cindy Lebeaupin Brossier, Marie-Noëlle Bouin, and Véronique Ducrocq
Atmos. Chem. Phys., 20, 1675–1699, https://doi.org/10.5194/acp-20-1675-2020,https://doi.org/10.5194/acp-20-1675-2020, 2020
Short summary
Transport of short-lived halocarbons to the stratosphere over the Pacific Ocean
Michal T. Filus, Elliot L. Atlas, Maria A. Navarro, Elena Meneguz, David Thomson, Matthew J. Ashfold, Lucy J. Carpenter, Stephen J. Andrews, and Neil R. P. Harris
Atmos. Chem. Phys., 20, 1163–1181, https://doi.org/10.5194/acp-20-1163-2020,https://doi.org/10.5194/acp-20-1163-2020, 2020
Short summary
Hadley cell expansion in CMIP6 models
Kevin M. Grise and Sean M. Davis
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1206,https://doi.org/10.5194/acp-2019-1206, 2020
Revised manuscript accepted for ACP
Short summary

Cited articles

Catalano, F. and Cenedese, A.: High-Resolution Numerical Modeling of Thermally Driven Slope Winds in a Valley with Strong Capping, J. Appl. Meteorol. Clim., 49, 1859–1880, https://doi.org/10.1175/2010JAMC2385.1, 2010.
Catalano, F. and Moeng, C.-H.: Large-Eddy Simulation of the Daytime Boundary Layer in an Idealized Valley Using the Weather Research and Forecasting Numerical Model, Bound-Lay. Meteorol., 137, 49–75, https://doi.org/10.1007/s10546-010-9518-8, 2010.
Chazette, P., Couvert, P., Randriamiarisoa, H., Sanak, J., Bonsang, B., Moral, P., Berthier, S., Salanave, S., and Toussaint, F.: Three-dimensional survey of pollution during winter in French Alps valleys, Atmos. Environ., 39, 1035–1047, https://doi.org/10.1016/j.atmosenv.2004.10.014, 2005.
Chemel, C., Arduini, G., Staquet, C., Largeron, Y., Legain, D., Tzanos, D., and Paci, A.: Valley heat deficit as a bulk measure of wintertime particulate air pollution in the Arve River Valley, Atmos. Environ., 128, 208–215, https://doi.org/10.1016/j.atmosenv.2015.12.058, 2016.
Chow, F. K., Weigel, A. P., Street, R. L., Rotach, M. W., and Xue, M.: High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part I: Methodology, Verification, and Sensitivity Experiments, J. Appl. Meteorol. Clim., 45, 63–86, https://doi.org/10.1175/JAM2322.1, 2006.
Publications Copernicus
Download
Short summary
Since populated valleys suffer often from poor air quality, it is of interest to better understand the various mechanisms relevant to remove pollutants from the valley atmosphere. One mechanism is the transport by along-slope flows, which are generated during fair-weather days. In this study we quantify the amount of tracer that is removed from a valley atmosphere and the amount that is re-circulated within the valleys. For this study we are using the numerical weather model WRF.
Since populated valleys suffer often from poor air quality, it is of interest to better...
Citation