Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 16, issue 20 | Copyright
Atmos. Chem. Phys., 16, 12983-12992, 2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Review article 20 Oct 2016

Review article | 20 Oct 2016

Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

Leo J. Donner1, Travis A. O'Brien2, Daniel Rieger3, Bernhard Vogel3, and William F. Cooke4 Leo J. Donner et al.
  • 1NOAA/GFDL, Princeton University Forrestal Campus, 201 Forrestal Road, Princeton, New Jersey 08540, USA
  • 2Lawrence Berkeley National Laboratory, Berkeley, and University of California, Davis, California, USA
  • 3Karlsruhe Institute of Technology, Karlsruhe, Germany
  • 4UCAR/GFDL, Princeton, New Jersey, USA

Abstract. Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction.

Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations that do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models.

New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.

Download & links
Publications Copernicus
Short summary
Uncertainties in both climate forcing and sensitivity limit the extent to which climate projections can meet society's needs for actionable climate science. Advances in observing and modeling atmospheric vertical velocities provide a potential breakthrough in understanding climate forcing and sensitivity, with concurrent reductions in uncertainty.
Uncertainties in both climate forcing and sensitivity limit the extent to which climate...