Articles | Volume 16, issue 19
https://doi.org/10.5194/acp-16-12531-2016
https://doi.org/10.5194/acp-16-12531-2016
Research article
 | 
07 Oct 2016
Research article |  | 07 Oct 2016

Air–snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

Josué Bock, Joël Savarino, and Ghislain Picard

Viewed

Total article views: 2,617 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,808 738 71 2,617 369 79 79
  • HTML: 1,808
  • PDF: 738
  • XML: 71
  • Total: 2,617
  • Supplement: 369
  • BibTeX: 79
  • EndNote: 79
Views and downloads (calculated since 08 Mar 2016)
Cumulative views and downloads (calculated since 08 Mar 2016)

Cited

Saved (preprint)

Discussed (final revised paper)

Latest update: 19 Apr 2024
Download
Short summary
We develop a physically based parameterisation of the co-condensation process. Our model includes solid-state diffusion within a snow grain. It reproduces with good agreement the nitrate measurement in surface snow. Winter and summer concentrations are driven respectively by thermodynamic equilibrium and co-condensation. Adsorbed nitrate likely accounts for a minor part. This work shows that co-condensation is required to explain the chemical composition of snow undergoing temperature gradient.
Altmetrics
Final-revised paper
Preprint