Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 18
Atmos. Chem. Phys., 16, 12205-12217, 2016
https://doi.org/10.5194/acp-16-12205-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Biogeochemical processes, tropospheric chemistry and interactions...

Atmos. Chem. Phys., 16, 12205-12217, 2016
https://doi.org/10.5194/acp-16-12205-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Sep 2016

Research article | 29 Sep 2016

Meteorological constraints on oceanic halocarbons above the Peruvian upwelling

Steffen Fuhlbrügge1, Birgit Quack1, Elliot Atlas2, Alina Fiehn1, Helmke Hepach1, and Kirstin Krüger3 Steffen Fuhlbrügge et al.
  • 1GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
  • 2Rosenstiel School for Marine and Atmospheric Sciences, Miami, Florida, USA
  • 3Department of Geosciences, University of Oslo, Oslo, Norway

Abstract. During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian upwelling. This study presents novel observations of the three very short lived substances (VSLSs) – bromoform, dibromomethane and methyl iodide – together with high-resolution meteorological measurements, Lagrangian transport and source–loss calculations. Oceanic emissions of bromoform and dibromomethane were relatively low compared to other upwelling regions, while those for methyl iodide were very high. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting as strong barriers for convection and vertical transport of trace gases in this region. Observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height correlated well during the cruise. We used a simple source–loss estimate to quantify the contribution of oceanic emissions along the cruise track to the observed atmospheric concentrations. This analysis showed that averaged, instantaneous emissions could not support the observed atmospheric mixing ratios of VSLSs and that the marine background abundances below the trade inversion were significantly influenced by advection of regional sources. Adding to this background, the observed maximum emissions of halocarbons in the coastal upwelling could explain the high atmospheric VSLS concentrations in combination with their accumulation under the distinct MABL and trade inversions. Stronger emissions along the nearshore coastline likely added to the elevated abundances under the steady atmospheric conditions. This study underscores the importance of oceanic upwelling and trade wind systems on the atmospheric distribution of marine VSLS emissions.

Publications Copernicus
Special issue
Download
Short summary
This study presents novel observations of the very short lived substances (VSLSs) bromoform, dibromomethane and methyl iodide with high-resolution meteorological measurements and Lagrangian transport in the Peruvian upwelling. With a simple source–loss estimate we identified VSLS abundances below the trade inversion to be significantly influenced by advection of regional sources, underscoring the importance of oceanic upwelling and trade winds on the atmospheric distribution of VSLS emission.
This study presents novel observations of the very short lived substances (VSLSs) bromoform,...
Citation
Share