Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 18
Atmos. Chem. Phys., 16, 11867–11881, 2016
https://doi.org/10.5194/acp-16-11867-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Pan-Eurasian Experiment (PEEX)

Atmos. Chem. Phys., 16, 11867–11881, 2016
https://doi.org/10.5194/acp-16-11867-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Sep 2016

Research article | 23 Sep 2016

A new parameterization of the UV irradiance altitude dependence for clear-sky conditions and its application in the on-line UV tool over Northern Eurasia

Nataly Chubarova, Yekaterina Zhdanova, and Yelena Nezval Nataly Chubarova et al.
  • Faculty of Geography, Moscow State University, GSP-1, 119991, Moscow, Russia

Abstract. A new method for calculating the altitude UV dependence is proposed for different types of biologically active UV radiation (erythemally weighted, vitamin-D-weighted and cataract-weighted types). We show that for the specified groups of parameters the altitude UV amplification (AUV) can be presented as a composite of independent contributions of UV amplification from different factors within a wide range of their changes with mean uncertainty of 1 % and standard deviation of 3 % compared with the exact model simulations with the same input parameters. The parameterization takes into account for the altitude dependence of molecular number density, ozone content, aerosol and spatial surface albedo. We also provide generalized altitude dependencies of the parameters for evaluating the AUV. The resulting comparison of the altitude UV effects using the proposed method shows a good agreement with the accurate 8-stream DISORT model simulations with correlation coefficient r  >  0.996. A satisfactory agreement was also obtained with the experimental UV data in mountain regions. Using this parameterization we analyzed the role of different geophysical parameters in UV variations with altitude. The decrease in molecular number density, especially at high altitudes, and the increase in surface albedo play the most significant role in the UV growth. Typical aerosol and ozone altitude UV effects do not exceed 10–20 %. Using the proposed parameterization implemented in the on-line UV tool (http://momsu.ru/uv/) for Northern Eurasia over the PEEX domain we analyzed the altitude UV increase and its possible effects on human health considering different skin types and various open body fraction for January and April conditions in the Alpine region.

Publications Copernicus
Download
Short summary
Biologically active ultraviolet (UV) radiation is an important environmental factor, which affect human health and nature. UV radiation has a significant increase with the altitude. We propose a new method for calculating the altitude UV dependence for different types of biologically active UV radiation. The proposed method was implemented in the on-line UV tool (http://momsu.ru/uv/) for Northern Eurasia. The possible UV effects on human health were considered over Alpine zone.
Biologically active ultraviolet (UV) radiation is an important environmental factor, which...
Citation