Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 18
Atmos. Chem. Phys., 16, 11671–11686, 2016
https://doi.org/10.5194/acp-16-11671-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Twenty-five years of operations of the Network for the Detection...

Atmos. Chem. Phys., 16, 11671–11686, 2016
https://doi.org/10.5194/acp-16-11671-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Sep 2016

Research article | 21 Sep 2016

The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 3: Quantification of the mid- and near-infrared water vapor continuum in the 2500 to 7800 cm−1 spectral range under atmospheric conditions

Andreas Reichert and Ralf Sussmann
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Andreas Reichert on behalf of the Authors (30 Aug 2016)  Author's response    Manuscript
ED: Publish as is (02 Sep 2016) by Hal Maring
Publications Copernicus
Short summary
Quantitative knowledge of water vapor infrared absorption is crucial for remote sensing and climate simulations. The water vapor continuum is a major contribution to atmospheric absorption in the near infrared (NIR), but recent laboratory studies show inconsistent results and cannot be transferred to atmospheric conditions. Therefore, we performed atmospheric measurements of the NIR continuum (2500–7800 cm−1) and found significant differences relative to the MT_CKD model and laboratory studies.
Quantitative knowledge of water vapor infrared absorption is crucial for remote sensing and...
Citation