http://www.atmos-chem-phys.net/16/11337/2016/
doi:10.5194/acp-16-11337-2016-supplement
© Author(s) 2016. CC Attribution 3.0 License.

Supplement of

Ambient measurement of fluorescent aerosol particles with a WIBS in the Yangtze River Delta of China: potential impacts of combustion-related aerosol particles

Xiawei Yu et al.

Correspondence to: Zhibin Wang (zhibin.wang@mpic.de) and Zhouqing Xie (zqxie@ustc.edu.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.
Figure S1. Diurnal variations of number concentrations of (a) total aerosol particles and fluorescent aerosol particles in channel (b) FL1, (c) FL2, and (d) FL3. Gray line indicates the number fraction of respective fluorescent particles (right axis). Shading indicates ± one standard deviation.
Figure S2. Correlations of FL1 fractions with $M_{BC}/PM_{0.8}$ in different size ranges. FL1 fraction is the number concentration of the subgroup ratio to the number concentration of total particles in each size bin. (a) Low fluorescent intensity group. (b) High fluorescent intensity group. The color lines represent the FL1 intensity (I_{FL1}) above the certain I_{cri}.
Figure S3. Correlations of FL2 fractions with $M_{BC}/PM_{0.8}$ in different size ranges. FL2 fraction is the number concentration of the subgroup ratio to the number concentration of total particles in each size bin. (a) Low fluorescent intensity group. (b) High fluorescent intensity group. The color lines represent the FL2 intensity (I_{FL2}) above the certain I_{cri}.