Articles | Volume 16, issue 17
https://doi.org/10.5194/acp-16-11083-2016
https://doi.org/10.5194/acp-16-11083-2016
Research article
 | 
07 Sep 2016
Research article |  | 07 Sep 2016

Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations

Carly L. Reddington, Dominick V. Spracklen, Paulo Artaxo, David A. Ridley, Luciana V. Rizzo, and Andrea Arana

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Carly Reddington on behalf of the Authors (24 May 2016)  Author's response    Manuscript
ED: Reconsider after minor revisions (Editor review) (25 May 2016) by Meinrat O. Andreae
AR by Dominick Spracklen on behalf of the Authors (12 Aug 2016)  Author's response    Manuscript
ED: Publish as is (18 Aug 2016) by Meinrat O. Andreae
Download
Short summary
We use a global aerosol model evaluated against long-term observations of surface aerosol and aerosol optical depth (AOD) to better understand the impacts of biomass burning on tropical aerosol. We use three satellite-derived fire emission datasets in the model, identifying regions where these datasets capture observations and where emissions are likely to be underestimated. For coincident observations of surface aerosol and AOD, model underestimation of AOD is greater than of surface aerosol.
Altmetrics
Final-revised paper
Preprint