Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 17
Atmos. Chem. Phys., 16, 10927–10940, 2016
https://doi.org/10.5194/acp-16-10927-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 10927–10940, 2016
https://doi.org/10.5194/acp-16-10927-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Sep 2016

Research article | 05 Sep 2016

Not all feldspars are equal: a survey of ice nucleating properties across the feldspar group of minerals

Alexander D. Harrison et al.
Related authors  
The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar
Alexander D. Harrison, Katherine Lever, Alberto Sanchez-Marroquin, Mark A. Holden, Thomas F. Whale, Mark D. Tarn, James B. McQuaid, and Benjamin J. Murray
Atmos. Chem. Phys., 19, 11343–11361, https://doi.org/10.5194/acp-19-11343-2019,https://doi.org/10.5194/acp-19-11343-2019, 2019
Short summary
An instrument for quantifying heterogeneous ice nucleation in multiwell plates using infrared emissions to detect freezing
Alexander D. Harrison, Thomas F. Whale, Rupert Rutledge, Stephen Lamb, Mark D. Tarn, Grace C. E. Porter, Michael P. Adams, James B. McQuaid, George J. Morris, and Benjamin J. Murray
Atmos. Meas. Tech., 11, 5629–5641, https://doi.org/10.5194/amt-11-5629-2018,https://doi.org/10.5194/amt-11-5629-2018, 2018
Short summary
Related subject area  
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Liquid–liquid phase separation and viscosity within secondary organic aerosol generated from diesel fuel vapors
Mijung Song, Adrian M. Maclean, Yuanzhou Huang, Natalie R. Smith, Sandra L. Blair, Julia Laskin, Alexander Laskin, Wing-Sy Wong DeRieux, Ying Li, Manabu Shiraiwa, Sergey A. Nizkorodov, and Allan K. Bertram
Atmos. Chem. Phys., 19, 12515–12529, https://doi.org/10.5194/acp-19-12515-2019,https://doi.org/10.5194/acp-19-12515-2019, 2019
Laboratory study of the heterogeneous ice nucleation on black-carbon-containing aerosol
Leonid Nichman, Martin Wolf, Paul Davidovits, Timothy B. Onasch, Yue Zhang, Doug R. Worsnop, Janarjan Bhandari, Claudio Mazzoleni, and Daniel J. Cziczo
Atmos. Chem. Phys., 19, 12175–12194, https://doi.org/10.5194/acp-19-12175-2019,https://doi.org/10.5194/acp-19-12175-2019, 2019
Short summary
Specifying the light-absorbing properties of aerosol particles in fresh snow samples, collected at the Environmental Research Station Schneefernerhaus (UFS), Zugspitze
Martin Schnaiter, Claudia Linke, Inas Ibrahim, Alexei Kiselev, Fritz Waitz, Thomas Leisner, Stefan Norra, and Till Rehm
Atmos. Chem. Phys., 19, 10829–10844, https://doi.org/10.5194/acp-19-10829-2019,https://doi.org/10.5194/acp-19-10829-2019, 2019
Short summary
Optimization of process models for determining volatility distribution and viscosity of organic aerosols from isothermal particle evaporation data
Olli-Pekka Tikkanen, Väinö Hämäläinen, Grazia Rovelli, Antti Lipponen, Manabu Shiraiwa, Jonathan P. Reid, Kari E. J. Lehtinen, and Taina Yli-Juuti
Atmos. Chem. Phys., 19, 9333–9350, https://doi.org/10.5194/acp-19-9333-2019,https://doi.org/10.5194/acp-19-9333-2019, 2019
Short summary
Inversely modeling homogeneous H2SO4 − H2O nucleation rate in exhaust-related conditions
Miska Olin, Jenni Alanen, Marja R. T. Palmroth, Topi Rönkkö, and Miikka Dal Maso
Atmos. Chem. Phys., 19, 6367–6388, https://doi.org/10.5194/acp-19-6367-2019,https://doi.org/10.5194/acp-19-6367-2019, 2019
Short summary
Cited articles  
Alpert, P. A. and Knopf, D. A.: Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model, Atmos. Chem. Phys., 16, 2083–2107, https://doi.org/10.5194/acp-16-2083-2016, 2016.
Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 498, 355–358, https://doi.org/10.1038/nature12278, 2013.
Augustin-Bauditz, S., Wex, H., Kanter, S., Ebert, M., Niedermeier, D., Stolz, F., Prager, A., and Stratmann, F.: The immersion mode ice nucleation behavior of mineral dusts: A comparison of different pure and surface modified dusts, Geophys. Res. Lett., 41, 7375–7382, https://doi.org/10.1002/2014GL061317, 2014.
Berner, R. A. and Holdren, G. R.: Mechanism of feldspar weathering – ii. Observations of feldspars from soils, Geochim. Cosmochim. Acta, 43, 1173–1186, https://doi.org/10.1016/0016-7037(79)90110-8, 1979.
Blum, A. E.: Feldspars in weathering, in: Feldspars and their reactions, Springer, 595–630, 1994.
Publications Copernicus
Download
Short summary
Mineral dust particles are known to act as effective ice nucleating particles in the atmosphere and to play a role in the glaciation of mixed phase clouds. We have measured the ice nucleation activity of 15 different feldspar samples using a droplet freezing experiment and shown that alkali feldspars nucleate ice much more efficiently than plagioclase feldspars. We have also shown that certain "hyper-active" alkali feldspars nucleate ice very efficiently compared to typical alkali feldspars.
Mineral dust particles are known to act as effective ice nucleating particles in the atmosphere...
Citation