Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 2
Atmos. Chem. Phys., 16, 1029-1043, 2016
https://doi.org/10.5194/acp-16-1029-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 1029-1043, 2016
https://doi.org/10.5194/acp-16-1029-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Jan 2016

Research article | 28 Jan 2016

Historic records of organic compounds from a high Alpine glacier: influences of biomass burning, anthropogenic emissions, and dust transport

C. Müller-Tautges1, A. Eichler2,3, M. Schwikowski2,3,4, G. B. Pezzatti5, M. Conedera5, and T. Hoffmann1 C. Müller-Tautges et al.
  • 1Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
  • 2Laboratory of Radiochemistry and Environmental Chemistry, Paul Scherrer Institute, Villigen, Switzerland
  • 3Oeschger Centre for Climate Research, University of Bern, Bern, Switzerland
  • 4Department for Chemistry and Biochemistry, University of Bern, Bern, Switzerland
  • 5Insubric Ecosystems Research Group, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Bellinzona, Switzerland

Abstract. Historic records of α-dicarbonyls (glyoxal, methylglyoxal), carboxylic acids (C6–C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid), and ions (oxalate, formate, calcium) were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC) coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS) for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6–C12) in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids) can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs). The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.

Publications Copernicus
Download
Short summary
The paper focuses on the determination and interpretation of historic records of organic compounds in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. The resulting long-term records of organic species were found to be influenced by the forest fire history in southern Switzerland, anthropogenic emissions, as well as changing mineral dust transport to the drilling site.
The paper focuses on the determination and interpretation of historic records of organic...
Citation