Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 15
Atmos. Chem. Phys., 16, 10175-10194, 2016
https://doi.org/10.5194/acp-16-10175-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 10175-10194, 2016
https://doi.org/10.5194/acp-16-10175-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Aug 2016

Research article | 11 Aug 2016

The contribution of soil biogenic NO and HONO emissions from a managed hyperarid ecosystem to the regional NOx emissions during growing season

Buhalqem Mamtimin1,2, Franz X. Meixner2, Thomas Behrendt2,4, Moawad Badawy2,3, and Thomas Wagner1 Buhalqem Mamtimin et al.
  • 1Max Planck Institute for Chemistry, Satellite Research Group, Mainz, Germany
  • 2Max Planck Institute for Chemistry, Biogeochemistry Department, Mainz, Germany
  • 3Department of Geography, Faculty of Arts, Ain Shams University, Cairo, Egypt
  • 4Max Planck Institute for Biogeochemistry, Jena, Germany

Abstract. A study was carried out to understand the contributions of soil biogenic NO emissions from managed (fertilized and irrigated) hyperarid ecosystems in NW China to the regional NOx emissions during the growing season. Soil biogenic net potential NO fluxes were quantified by laboratory incubation of soil samples from the three dominating ecosystems (desert, cotton, and grape fields). Regional biogenic NO emissions were calculated bottom-up hourly for the entire growing season (April–September 2010) by considering corresponding land use, hourly data of soil temperature, gravimetric soil moisture, and fertilizer enhancement factors. The regional HONO emissions were estimated using the ratio of the optimum condition ((FN,opt(HONO) to FN,opt (NO)).

Regional anthropogenic NOx emissions were calculated bottom-up from annual statistical data provided by regional and local government bureaus which have been downscaled to monthly value. Regional top-down emission estimates of NOx were derived on the monthly basis from satellite observations (OMI) of tropospheric vertical NO2 column densities and prescribed values of the tropospheric NOx lifetime. In order to compare the top-down and bottom-up emission estimates, all emission estimates were expressed in terms of mass of atomic nitrogen. Consequently, monthly top-down NOx emissions (total) were compared with monthly bottom-up NOx emissions (biogenic + anthropogenic) for the time of the satellite overpass (around 13:00LT) with the consideration of the diurnal cycle of bottom-up estimates. Annual variation in total Tohsun Oasis NOx emissions is characterized by a strong peak in winter (December–February) and a secondary peak in summer (June–August). During summer, soil biogenic emissions were from equal to double that of related anthropogenic emissions, and grape soils were the main contributor to soil biogenic emissions, followed by cotton soils, while emissions from the desert were negligible. The top-down and bottom-up emission estimates were shown to be useful methods to estimate the monthly/seasonal cycle of the total regional NOx emissions. The resulting total NOx emissions show a strong peak in winter and a secondary peak in summer, and the second maximum in summer was only found if the soil emissions were taken into account, which provides confidence in both completely independent methods. Despite the regional character of these findings, particularly the second maximum in summer provides substantial evidence to hypothesize that biogenic emissions from soils of managed drylands (irrigated and fertilized) in the growing period may be much more important contributors to regional NOx budgets of dryland regions than thought before.

Publications Copernicus
Download
Short summary
In this study, we focused on the contributions of soil biogenic NO and HONO emissions from a managed hyperarid ecosystem to the regional NOx emissions during growing season. In particular, the second maximum in summer provides substantial evidence to hypothesize that those biogenic emissions from soils of managed drylands in the growing period may be much more important contributors to regional NOx budgets of dryland regions than previously thought.
In this study, we focused on the contributions of soil biogenic NO and HONO emissions from a...
Citation
Share