Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 16, issue 2
Atmos. Chem. Phys., 16, 1003–1015, 2016
https://doi.org/10.5194/acp-16-1003-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 1003–1015, 2016
https://doi.org/10.5194/acp-16-1003-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Jan 2016

Research article | 28 Jan 2016

The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore–Washington, D.C. region

A. J. Beyersdorf1, L. D. Ziemba1, G. Chen1, C. A. Corr1,2, J. H. Crawford1, G. S. Diskin1, R. H. Moore1, K. L. Thornhill1,3, E. L. Winstead1,3, and B. E. Anderson1 A. J. Beyersdorf et al.
  • 1NASA Langley Research Center, Hampton, Virginia, USA
  • 2Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
  • 3Science Systems and Applications, Inc., Hampton, Virginia, USA

Abstract. In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type – such as composition, size, and hygroscopicity – and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD–Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions.

Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m−3 in the lowest 1 km, decreasing to 35 ng m−3 in the free troposphere (above 3 km).

Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed-layer aerosol extinction. Aerosol loading (dry extinction) was found to be the predominant source, accounting for 88 % on average of the measured spatial variability in ambient extinction, with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction.

This work shows that extinction is driven to first order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite–modeling assimilation products that are able to capture these components of the aerosol optical depth (AOD)–PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day to day were large and could cause a bias of up to 27 % if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km2). This is complimentary to the results of Chu et al. (2015), who determined that the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region.

Publications Copernicus
Download
Short summary
Airborne measurements in Baltimore-Washington, DC allow for an understanding of the relationship between aerosol extinction which can be measured by satellites and aerosol mass used for air quality monitoring. Extinction was found to be driven to first order by aerosol loadings; however, humidity-driven aerosol hydration plays an important secondary role. Spatial and diurnal variability in aerosol composition were small, but day-to-day variability in aerosol hygroscopicity must be accounted for.
Airborne measurements in Baltimore-Washington, DC allow for an understanding of the relationship...
Citation