Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year
    5.689
  • CiteScore value: 5.44 CiteScore
    5.44
  • SNIP value: 1.519 SNIP 1.519
  • IPP value: 5.37 IPP 5.37
  • SJR value: 3.032 SJR 3.032
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 161 Scimago H
    index 161
  • h5-index value: 86 h5-index 86
Volume 15, issue 17
Atmos. Chem. Phys., 15, 9865-9881, 2015
https://doi.org/10.5194/acp-15-9865-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 9865-9881, 2015
https://doi.org/10.5194/acp-15-9865-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Sep 2015

Research article | 02 Sep 2015

Observation of ozone enhancement in the lower troposphere over East Asia from a space-borne ultraviolet spectrometer

S. Hayashida1, X. Liu2, A. Ono1, K. Yang3,4, and K. Chance2 S. Hayashida et al.
  • 1Faculty of Science, Nara Women's University, Nara 630-8263, Japan
  • 2Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
  • 3Department of Atmospheric and Oceanic Science, University of Maryland College Park, Maryland 20742, USA
  • 4NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

Abstract. We report observations from space using ultraviolet (UV) radiance for significant enhancement of ozone in the lower troposphere over central and eastern China (CEC). The recent retrieval products of the Ozone Monitoring Instrument (OMI) onboard the Earth Observing System (EOS) Aura satellite revealed the spatial and temporal variation of ozone distributions in multiple layers in the troposphere. We compared the OMI-derived ozone over Beijing with airborne measurements by the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program. The correlation between OMI and MOZAIC ozone in the lower troposphere was reasonable, which assured the reliability of OMI ozone retrievals in the lower troposphere under enhanced ozone conditions. The ozone enhancement was clearly observed over CEC, with Shandong Province as its center, and was most notable in June in any given year. Similar seasonal variations were observed throughout the 9-year OMI measurement period of 2005 to 2013. A considerable part of this ozone enhancement could be attributed to the emissions of ozone precursors from industrial activities and automobiles, and possibly from open crop residue burning (OCRB) after the winter wheat harvest. The ozone distribution presented in this study is also consistent with some model studies. The lower tropospheric ozone distribution is first shown from OMI retrieval in this study, and the results will be useful in clarifying any unknown factors that influence ozone distribution by comparison with model simulations.

Please read the corrigendum first before accessing the article.
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
The lower tropospheric ozone distribution maps were first obtained from the recent retrieval products of the Ozone Monitoring Instrument (OMI) onboard the Earth Observing System (EOS) Aura satellite. We found significant enhancement of ozone in the lower troposphere over central and eastern China (CEC), with Shandong Province as its center, and most notable in June in any given year. Similar seasonal variations were observed throughout the 9-year OMI measurement period of 2005 to 2013.
The lower tropospheric ozone distribution maps were first obtained from the recent retrieval...
Citation