Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 15, issue 17
Atmos. Chem. Phys., 15, 9747-9763, 2015
https://doi.org/10.5194/acp-15-9747-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 9747-9763, 2015
https://doi.org/10.5194/acp-15-9747-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Sep 2015

Research article | 01 Sep 2015

Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions

A. Babenhauserheide1, S. Basu5, S. Houweling2, W. Peters3,4, and A. Butz1 A. Babenhauserheide et al.
  • 1IMK-ASF, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
  • 2Netherlands Institute of Space Research (SRON), Utrecht, the Netherlands
  • 3Department of Meteorology and Air Quality, Environmental Sciences Group Wageningen University, Wageningen, the Netherlands
  • 4University of Groningen, Centre for Isotope Research, Groningen, the Netherlands
  • 5Earth System Research Laboratory, Global Monitoring Division, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA

Abstract. Data assimilation systems allow for estimating surface fluxes of greenhouse gases from atmospheric concentration measurements. Good knowledge about fluxes is essential to understand how climate change affects ecosystems and to characterize feedback mechanisms. Based on the assimilation of more than 1 year of atmospheric in situ concentration measurements, we compare the performance of two established data assimilation models, CarbonTracker and TM5-4DVar (Transport Model 5 – Four-Dimensional Variational model), for CO2 flux estimation. CarbonTracker uses an ensemble Kalman filter method to optimize fluxes on ecoregions. TM5-4DVar employs a 4-D variational method and optimizes fluxes on a 6° × 4° longitude–latitude grid. Harmonizing the input data allows for analyzing the strengths and weaknesses of the two approaches by direct comparison of the modeled concentrations and the estimated fluxes. We further assess the sensitivity of the two approaches to the density of observations and operational parameters such as the length of the assimilation time window.

Our results show that both models provide optimized CO2 concentration fields of similar quality. In Antarctica CarbonTracker underestimates the wintertime CO2 concentrations, since its 5-week assimilation window does not allow for adjusting the distant surface fluxes in response to the detected concentration mismatch. Flux estimates by CarbonTracker and TM5-4DVar are consistent and robust for regions with good observation coverage, regions with low observation coverage reveal significant differences. In South America, the fluxes estimated by TM5-4DVar suffer from limited representativeness of the few observations. For the North American continent, mimicking the historical increase of the measurement network density shows improving agreement between CarbonTracker and TM5-4DVar flux estimates for increasing observation density.

Publications Copernicus
Download
Short summary
We compare two different data assimilation systems for estimating sources and sinks of CO_2 from concentration measurements. The systems are CarbonTracker and TM5-4DVar, which have both been used in a number of scientific studies. We analyze the differences between both models as well as the sensitivity of the estimated sources and sinks to the observation coverage. The results provide a lower limit for the uncertainty of surface carbon fluxes with the current measurement network.
We compare two different data assimilation systems for estimating sources and sinks of CO_2 from...
Citation
Share