Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year
    5.689
  • CiteScore value: 5.44 CiteScore
    5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 161 Scimago H
    index 161
Volume 15, issue 14
Atmos. Chem. Phys., 15, 8201-8216, 2015
https://doi.org/10.5194/acp-15-8201-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 8201-8216, 2015
https://doi.org/10.5194/acp-15-8201-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Jul 2015

Research article | 24 Jul 2015

Climate responses to anthropogenic emissions of short-lived climate pollutants

L. H. Baker et al.
Related authors  
Methods of investigating forecast error sensitivity to ensemble size in a limited-area convection-permitting ensemble
Ross Noel Bannister, Stefano Migliorini, Alison Clare Rudd, and Laura Hart Baker
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-260,https://doi.org/10.5194/gmd-2017-260, 2017
Revised manuscript has not been submitted
Short summary
Regional and seasonal radiative forcing by perturbations to aerosol and ozone precursor emissions
Nicolas Bellouin, Laura Baker, Øivind Hodnebrog, Dirk Olivié, Ribu Cherian, Claire Macintosh, Bjørn Samset, Anna Esteve, Borgar Aamaas, Johannes Quaas, and Gunnar Myhre
Atmos. Chem. Phys., 16, 13885-13910, https://doi.org/10.5194/acp-16-13885-2016,https://doi.org/10.5194/acp-16-13885-2016, 2016
Short summary
Evaluating the climate and air quality impacts of short-lived pollutants
A. Stohl, B. Aamaas, M. Amann, L. H. Baker, N. Bellouin, T. K. Berntsen, O. Boucher, R. Cherian, W. Collins, N. Daskalakis, M. Dusinska, S. Eckhardt, J. S. Fuglestvedt, M. Harju, C. Heyes, Ø. Hodnebrog, J. Hao, U. Im, M. Kanakidou, Z. Klimont, K. Kupiainen, K. S. Law, M. T. Lund, R. Maas, C. R. MacIntosh, G. Myhre, S. Myriokefalitakis, D. Olivié, J. Quaas, B. Quennehen, J.-C. Raut, S. T. Rumbold, B. H. Samset, M. Schulz, Ø. Seland, K. P. Shine, R. B. Skeie, S. Wang, K. E. Yttri, and T. Zhu
Atmos. Chem. Phys., 15, 10529-10566, https://doi.org/10.5194/acp-15-10529-2015,https://doi.org/10.5194/acp-15-10529-2015, 2015
Short summary
Representation of model error in a convective-scale ensemble prediction system
L. H. Baker, A. C. Rudd, S. Migliorini, and R. N. Bannister
Nonlin. Processes Geophys., 21, 19-39, https://doi.org/10.5194/npg-21-19-2014,https://doi.org/10.5194/npg-21-19-2014, 2014
Related subject area  
Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments
Marc Mallet, Pierre Nabat, Paquita Zuidema, Jens Redemann, Andrew Mark Sayer, Martin Stengel, Sebastian Schmidt, Sabrina Cochrane, Sharon Burton, Richard Ferrare, Kerry Meyer, Pablo Saide, Hiren Jethva, Omar Torres, Robert Wood, David Saint Martin, Romain Roehrig, Christina Hsu, and Paola Formenti
Atmos. Chem. Phys., 19, 4963-4990, https://doi.org/10.5194/acp-19-4963-2019,https://doi.org/10.5194/acp-19-4963-2019, 2019
Short summary
BVOC–aerosol–climate feedbacks investigated using NorESM
Moa K. Sporre, Sara M. Blichner, Inger H. H. Karset, Risto Makkonen, and Terje K. Berntsen
Atmos. Chem. Phys., 19, 4763-4782, https://doi.org/10.5194/acp-19-4763-2019,https://doi.org/10.5194/acp-19-4763-2019, 2019
Short summary
Potential impacts of cold frontal passage on air quality over the Yangtze River Delta, China
Hanqing Kang, Bin Zhu, Jinhui Gao, Yao He, Honglei Wang, Jifeng Su, Chen Pan, Tong Zhu, and Bu Yu
Atmos. Chem. Phys., 19, 3673-3685, https://doi.org/10.5194/acp-19-3673-2019,https://doi.org/10.5194/acp-19-3673-2019, 2019
Short summary
The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings
Anna L. Hodshire, Pedro Campuzano-Jost, John K. Kodros, Betty Croft, Benjamin A. Nault, Jason C. Schroder, Jose L. Jimenez, and Jeffrey R. Pierce
Atmos. Chem. Phys., 19, 3137-3160, https://doi.org/10.5194/acp-19-3137-2019,https://doi.org/10.5194/acp-19-3137-2019, 2019
Short summary
Aerosol optical properties over Europe: an evaluation of the AQMEII Phase 3 simulations against satellite observations
Laura Palacios-Peña, Pedro Jiménez-Guerrero, Rocío Baró, Alessandra Balzarini, Roberto Bianconi, Gabriele Curci, Tony Christian Landi, Guido Pirovano, Marje Prank, Angelo Riccio, Paolo Tuccella, and Stefano Galmarini
Atmos. Chem. Phys., 19, 2965-2990, https://doi.org/10.5194/acp-19-2965-2019,https://doi.org/10.5194/acp-19-2965-2019, 2019
Short summary
Cited articles  
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res.-Atmos., 105, 6837–6844, 2000.
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 3. Sectional representation, J. Geophys. Res.-Atmos., 107, AAC1.1–AAC1.6, https://doi.org/10.1029/2001JD000483, 2002.
Amann, M., Klimont, Z., and Wagner, F.: Regional and Global Emissions of Air Pollutants: Recent Trends and Future Scenarios, Annu. Rev. Env. Resour., 38, 31–55, 2013.
Andrews, T., Forster, P. M., Boucher, O., Bellouin, N., and Jones, A.: Precipitation, radiative forcing and global temperature change, Geophys. Res. Lett., 37, L14701, https://doi.org/10.1029/2010GL043991, 2010.
Andrews, T., Gregory, J. M., Webb, M. J., and Taylor, K. E.: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models, Geophys. Res. Lett., 39, L09712, https://doi.org/10.1029/2012GL051607, 2012.
Publications Copernicus
Download
Short summary
We investigate the impact of removing land-based anthropogenic emissions of three aerosol species, using four fully-coupled atmosphere-ocean global climate models. Removing SO2 emissions leads to warming globally, strongest in the Northern Hemisphere (NH), and an increase in NH precipitation. Organic and black carbon (OC, BC) have a weaker impact, and less certainty on the response; OC (BC) removal shows a weak overall warming (cooling), and both show small increases in precipitation globally.
We investigate the impact of removing land-based anthropogenic emissions of three aerosol...
Citation