Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 15, issue 13
Atmos. Chem. Phys., 15, 7605–7617, 2015
https://doi.org/10.5194/acp-15-7605-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: The Boundary-Layer Late Afternoon and Sunset Turbulence (BLLAST)...

Atmos. Chem. Phys., 15, 7605–7617, 2015
https://doi.org/10.5194/acp-15-7605-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Jul 2015

Research article | 14 Jul 2015

A comprehensive investigation on afternoon transition of the atmospheric boundary layer over a tropical rural site

A. Sandeep et al.

Related authors

Variability in vertical structure of precipitation with sea surface temperature over the Arabian Sea and the Bay of Bengal as inferred by Tropical Rainfall Measuring Mission precipitation radar measurements
Kadiri Saikranthi, Basivi Radhakrishna, Thota Narayana Rao, and Sreedharan Krishnakumari Satheesh
Atmos. Chem. Phys., 19, 10423–10432, https://doi.org/10.5194/acp-19-10423-2019,https://doi.org/10.5194/acp-19-10423-2019, 2019
Short summary
Assessment of small-scale variability of rainfall and multi-satellite precipitation estimates using measurements from a dense rain gauge network in Southeast India
K. Sunilkumar, T. Narayana Rao, and S. Satheeshkumar
Hydrol. Earth Syst. Sci., 20, 1719–1735, https://doi.org/10.5194/hess-20-1719-2016,https://doi.org/10.5194/hess-20-1719-2016, 2016
A novel approach for the extraction of cloud motion vectors using airglow imager measurements
S. Satheesh Kumar, T. Narayana Rao, and A. Taori
Atmos. Meas. Tech., 8, 3893–3901, https://doi.org/10.5194/amt-8-3893-2015,https://doi.org/10.5194/amt-8-3893-2015, 2015
Evidence for tropospheric wind shear excitation of high-phase-speed gravity waves reaching the mesosphere using the ray-tracing technique
M. Pramitha, M. Venkat Ratnam, A. Taori, B. V. Krishna Murthy, D. Pallamraju, and S. Vijaya Bhaskar Rao
Atmos. Chem. Phys., 15, 2709–2721, https://doi.org/10.5194/acp-15-2709-2015,https://doi.org/10.5194/acp-15-2709-2015, 2015
Short summary
Investigation of convectively generated gravity wave characteristics and generation mechanisms during the passage of thunderstorm and squall line over Gadanki (13.5° N, 79.2° E)
M. Arunachalam Srinivasan, S. V. B. Rao, and R. Suresh
Ann. Geophys., 32, 57–68, https://doi.org/10.5194/angeo-32-57-2014,https://doi.org/10.5194/angeo-32-57-2014, 2014

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Very high stratospheric influence observed in the free troposphere over the northern Alps – just a local phenomenon?
Thomas Trickl, Hannes Vogelmann, Ludwig Ries, and Michael Sprenger
Atmos. Chem. Phys., 20, 243–266, https://doi.org/10.5194/acp-20-243-2020,https://doi.org/10.5194/acp-20-243-2020, 2020
Short summary
Long-lived high-frequency gravity waves in the atmospheric boundary layer: observations and simulations
Mingjiao Jia, Jinlong Yuan, Chong Wang, Haiyun Xia, Yunbin Wu, Lijie Zhao, Tianwen Wei, Jianfei Wu, Lu Wang, Sheng-Yang Gu, Liqun Liu, Dachun Lu, Rulong Chen, Xianghui Xue, and Xiankang Dou
Atmos. Chem. Phys., 19, 15431–15446, https://doi.org/10.5194/acp-19-15431-2019,https://doi.org/10.5194/acp-19-15431-2019, 2019
Short summary
Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data
Ming Shangguan, Wuke Wang, and Shuanggen Jin
Atmos. Chem. Phys., 19, 6659–6679, https://doi.org/10.5194/acp-19-6659-2019,https://doi.org/10.5194/acp-19-6659-2019, 2019
Short summary
Indications for a potential synchronization between the phase evolution of the Madden–Julian oscillation and the solar 27-day cycle
Christoph G. Hoffmann and Christian von Savigny
Atmos. Chem. Phys., 19, 4235–4256, https://doi.org/10.5194/acp-19-4235-2019,https://doi.org/10.5194/acp-19-4235-2019, 2019
Short summary
Mesoscale fine structure of a tropopause fold over mountains
Wolfgang Woiwode, Andreas Dörnbrack, Martina Bramberger, Felix Friedl-Vallon, Florian Haenel, Michael Höpfner, Sören Johansson, Erik Kretschmer, Isabell Krisch, Thomas Latzko, Hermann Oelhaf, Johannes Orphal, Peter Preusse, Björn-Martin Sinnhuber, and Jörn Ungermann
Atmos. Chem. Phys., 18, 15643–15667, https://doi.org/10.5194/acp-18-15643-2018,https://doi.org/10.5194/acp-18-15643-2018, 2018
Short summary

Cited articles

Acevedo, O. C. and Fitzjarrald, D. R.: The early evening surface-layer transition: Temporal and spatial variability, J. Atmos. Sci., 11, 2650–2667, 2001.
Anandan, V. K., Shravankumar, M., and Srinivasarao, I.: First results of experimental tests of newly developed NARL phased array Doppler sodar, J. Atmos. Ocean. Tech., 25, 1778–1784, 2008.
Angevine, W. M.: Entrainment results including advection and case studies from the Flatland boundary layer experiments, J. Geophys. Res., 104, 30947–30963, 1999.
Angevine, W. M.: Transitional, entraining, cloudy, and coastal boundary layers, Acta Geophys., 56, 2–20, 2008.
Beare, R. J., Edwards, J. M., and Lapworth, A. J.: Simulation of the observed evening transition and nocturnal boundary layers: Large–eddy modelling, Q. J. Roy. Meteor. Soc., 132, 61–80, 2006.
Publications Copernicus
Download
Short summary
The afternoon-evening transition (AET) in the atmospheric boundary layer has been studied in an integrated approach using 3 years of tower, sodar and wind profiler measurements. Such a long-term data set has been used for the first time to understand the behavior of AET. It allowed us to study the seasonal variation. In contrast to the common belief that the transition evolves from bottom to top, the present study clearly showed that the start time of transition follows top-to-bottom evolution.
The afternoon-evening transition (AET) in the atmospheric boundary layer has been studied in an...
Citation