Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 15, issue 13
Atmos. Chem. Phys., 15, 7337–7349, 2015
https://doi.org/10.5194/acp-15-7337-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 7337–7349, 2015
https://doi.org/10.5194/acp-15-7337-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 08 Jul 2015

Research article | 08 Jul 2015

Characterisation of J(O1D) at Cape Grim 2000–2005

S. R. Wilson S. R. Wilson
  • Centre for Atmospheric Chemistry, School of Chemistry, University of Wollongong, Wollongong NSW 2522, Australia

Abstract. Estimates of the rate of production of excited oxygen atoms due to the photolysis of ozone (J(O1D)) have been derived from radiation measurements carried out at Cape Grim, Tasmania (40.6° S, 144.7° E). The individual measurements have a total uncertainty of 16 % (1σ). These estimates agree well with model estimates of clear-sky photolysis rates. Observations spanning 2000–2005 have been used to quantify the impact of season, clouds and ozone column amount. The annual cycle of J(O1D) has been investigated via monthly means. These means show an interannual variation (monthly standard deviation) of 9 %, but in midsummer and midwinter this reduces to 3–5 %. Variations in solar zenith angle and total column ozone explain 86 % of the observed variability in the measured photolysis rates. The impact of total column ozone, expressed as a radiation amplification factor (RAF), is found to be ~ 1.53, in agreement with model estimates. This ozone dependence explains 20 % of the variation observed at medium solar zenith angles (30–50°). The impact of clouds results in a median reduction of 30 % in J(O1D) for the same solar zenith angle range. Including estimates of cloudiness derived from long-wave radiation measurements resulted in a statistically significant fit to observations, but the quality of the fit did not increase significantly as measured by the adjusted R2.

Publications Copernicus
Download
Short summary
Measurements of the photolysis rates which drive production of OH from ozone are reported for Cape Grim, a "clean-air" site in the southern midlatitudes. This remote maritime site sits in the Southern Ocean, a region of the globe which is little studied. From the 6 years of data the dependence of this photolysis on solar zenith angle and stratospheric ozone is determined. Included with the reported values is an estimate of the uncertainties in these measurements.
Measurements of the photolysis rates which drive production of OH from ozone are reported for...
Citation