Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 15, issue 13
Atmos. Chem. Phys., 15, 7247-7267, 2015
https://doi.org/10.5194/acp-15-7247-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: BACCHUS – Impact of Biogenic versus Anthropogenic emissions...

Atmos. Chem. Phys., 15, 7247-7267, 2015
https://doi.org/10.5194/acp-15-7247-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Jul 2015

Research article | 02 Jul 2015

Low hygroscopic scattering enhancement of boreal aerosol and the implications for a columnar optical closure study

P. Zieger et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Paul Zieger on behalf of the Authors (29 May 2015)  Author's response    Manuscript
ED: Publish as is (16 Jun 2015) by Ernest Weingartner
Publications Copernicus
Special issue
Download
Short summary
The effect of water uptake (hygroscopicity) on aerosol light scattering properties is generally lower for boreal aerosol due to the dominance of organic substances. A columnar optical closure study using ground-based and airborne measurements of aerosol optical, chemical and microphysical properties was conducted and the implications and limitations are discussed.
The effect of water uptake (hygroscopicity) on aerosol light scattering properties is generally...
Citation
Share