Articles | Volume 15, issue 13
https://doi.org/10.5194/acp-15-7195-2015
https://doi.org/10.5194/acp-15-7195-2015
Research article
 | 
01 Jul 2015
Research article |  | 01 Jul 2015

A simple formulation of the CH2O photolysis quantum yields

E.-P. Röth and D. H. Ehhalt

Related authors

Quantum yields of CHDO above 300 nm
Ernst-Peter Röth and Luc Vereecken
Atmos. Chem. Phys., 24, 2625–2638, https://doi.org/10.5194/acp-24-2625-2024,https://doi.org/10.5194/acp-24-2625-2024, 2024
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates
Jean-François Müller, Trissevgeni Stavrakou, Glenn-Michael Oomen, Beata Opacka, Isabelle De Smedt, Alex Guenther, Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Michel Grutter, James Hannigan, Frank Hase, Rigel Kivi, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Amelie Röhling, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Alan Fried
Atmos. Chem. Phys., 24, 2207–2237, https://doi.org/10.5194/acp-24-2207-2024,https://doi.org/10.5194/acp-24-2207-2024, 2024
Short summary
Investigation of the renewed methane growth post-2007 with high-resolution 3-D variational inverse modeling and isotopic constraints
Joël Thanwerdas, Marielle Saunois, Antoine Berchet, Isabelle Pison, and Philippe Bousquet
Atmos. Chem. Phys., 24, 2129–2167, https://doi.org/10.5194/acp-24-2129-2024,https://doi.org/10.5194/acp-24-2129-2024, 2024
Short summary
Revisiting day-of-week ozone patterns in an era of evolving US air quality
Heather Simon, Christian Hogrefe, Andrew Whitehill, Kristen M. Foley, Jennifer Liljegren, Norm Possiel, Benjamin Wells, Barron H. Henderson, Lukas C. Valin, Gail Tonnesen, K. Wyat Appel, and Shannon Koplitz
Atmos. Chem. Phys., 24, 1855–1871, https://doi.org/10.5194/acp-24-1855-2024,https://doi.org/10.5194/acp-24-1855-2024, 2024
Short summary
Air quality and radiative impacts of downward-propagating sudden stratospheric warmings (SSWs)
Ryan S. Williams, Michaela I. Hegglin, Patrick Jöckel, Hella Garny, and Keith P. Shine
Atmos. Chem. Phys., 24, 1389–1413, https://doi.org/10.5194/acp-24-1389-2024,https://doi.org/10.5194/acp-24-1389-2024, 2024
Short summary
Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs)
Rona L. Thompson, Stephen A. Montzka, Martin K. Vollmer, Jgor Arduini, Molly Crotwell, Paul B. Krummel, Chris Lunder, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Stefan Reimann, Isaac Vimont, Hsiang Wang, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 24, 1415–1427, https://doi.org/10.5194/acp-24-1415-2024,https://doi.org/10.5194/acp-24-1415-2024, 2024
Short summary

Cited articles

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Bowman, J. M. and Shepler, B. C.: Roaming Radicals, Ann. Rev. Phys. Chem., 62, 531–553, 2011.
Christoffel, K. M. and Bowman, J. M.: Three Reaction Pathways in the H + HCO → H2 + CO Reaction, J. Phys. Chem. A, 113, 4138–4144, 2009.
Clark, J. H., Moore, C. B., and Nogar, N. S.: The photochemistry of formaldehyde: Absolute quantum yields, radical reactions, and NO reactions, J. Chem. Phys., 68, 1264–1271, 1978.
DeMore, W. B., Sander, S. P., Howard, C. J., Ravishankara, A. R., Golden, D. M., Kolb, C. E., Hampson, R. F., Kurylo, M. J., and Molina, M. J.: NASA panel for data evaluation, chemical kinetics and photochemical data evaluation for use in stratospheric modeling, JPL Publication 97-4, 1997.
Download
Short summary
We present a new way to formulate the quantum yields of formaldehyde with several advantages. The formulation is simpler and has fewer parameters than those used so far, and the parameters have a physical meaning. It provides a template for the formulation of other quantum yields, e.g., of the isotopologues of formaldehyde. In addition, we offer a careful review of published measurements. It is also advantageous that the formulation can easily be modified to include temperature effects.
Altmetrics
Final-revised paper
Preprint