Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 15, issue 13
Atmos. Chem. Phys., 15, 7173–7193, 2015
https://doi.org/10.5194/acp-15-7173-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 7173–7193, 2015
https://doi.org/10.5194/acp-15-7173-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Jul 2015

Research article | 01 Jul 2015

Fire emission heights in the climate system – Part 2: Impact on transport, black carbon concentrations and radiation

A. Veira et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Andreas Veira on behalf of the Authors (03 Jun 2015)  Author's response    Manuscript
ED: Publish as is (03 Jun 2015) by Kostas Tsigaridis
Publications Copernicus
Short summary
Global aerosol-climate models usually prescribe wildfire emission injections at fixed atmospheric levels. Here, we quantify the impact of prescribed and parametrized emission heights on aerosol long-range transport and radiation. For global emission height changes of 1.5-3.5km, we find a top-of-atmosphere radiative forcing of 0.05-0.1Wm-2. Replacing prescribed emission heights by a simple plume height parametrization only marginally improves the model performance in aerosol optical thickness.
Global aerosol-climate models usually prescribe wildfire emission injections at fixed...
Citation