Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Volume 15, issue 12
Atmos. Chem. Phys., 15, 6637–6649, 2015
https://doi.org/10.5194/acp-15-6637-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: East Asia emissions assessment (EA2)

Atmos. Chem. Phys., 15, 6637–6649, 2015
https://doi.org/10.5194/acp-15-6637-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Jun 2015

Research article | 16 Jun 2015

Estimating NH3 emissions from agricultural fertilizer application in China using the bi-directional CMAQ model coupled to an agro-ecosystem model

X. Fu1,2, S. X. Wang1,2, L. M. Ran3, J. E. Pleim4, E. Cooter4, J. O. Bash4, V. Benson5, and J. M. Hao1,6 X. Fu et al.
  • 1State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
  • 2State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
  • 3University of North Carolina, Institute for the Environment, Chapel Hill, North Carolina, USA
  • 4US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
  • 5Benson Consulting, Columbia, Missouri, USA
  • 6Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing 100084, China

Abstract. Atmospheric ammonia (NH3) plays an important role in atmospheric aerosol chemistry. China is one of the largest NH3 emitting countries with the majority of NH3 emissions coming from agricultural practices, such as fertilizer application and livestock production. The current NH3 emission estimates in China are mainly based on pre-defined emission factors that lack temporal or spatial details, which are needed to accurately predict NH3 emissions. This study provides the first online estimate of NH3 emissions from agricultural fertilizer application in China, using an agricultural fertilizer modeling system which couples a regional air quality model (the Community Multi-scale Air Quality model, or CMAQ) and an agro-ecosystem model (the Environmental Policy Integrated Climate model, or EPIC). This method improves the spatial and temporal resolution of NH3 emissions from this sector.

We combined the cropland area data of 14 crops from 2710 counties with the Moderate Resolution Imaging Spectroradiometer (MODIS) land use data to determine the crop distribution. The fertilizer application rates and methods for different crops were collected at provincial or agricultural region levels. The EPIC outputs of daily fertilizer application and soil characteristics were input into the CMAQ model and the hourly NH3 emissions were calculated online with CMAQ running. The estimated agricultural fertilizer NH3 emissions in this study were approximately 3 Tg in 2011. The regions with the highest modeled emission rates are located in the North China Plain. Seasonally, peak ammonia emissions occur from April to July. Compared with previous researches, this study considers an increased number of influencing factors, such as meteorological fields, soil and fertilizer application, and provides improved NH3 emissions with higher spatial and temporal resolution.

Publications Copernicus
Download
Short summary
In this study, we estimate, for the first time, the NH3 emission from the agricultural fertilizer application in China online using the bi-directional CMAQ model coupled to an agro-ecosystem model. Compared with previous researches, this method considers more influencing factors, such as meteorological fields, soil and the fertilizer application, and provides improved NH3 emission with higher spatial and temporal resolution.
In this study, we estimate, for the first time, the NH3 emission from the agricultural...
Citation