Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.668 IF 5.668
  • IF 5-year value: 6.201 IF 5-year
    6.201
  • CiteScore value: 6.13 CiteScore
    6.13
  • SNIP value: 1.633 SNIP 1.633
  • IPP value: 5.91 IPP 5.91
  • SJR value: 2.938 SJR 2.938
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 174 Scimago H
    index 174
  • h5-index value: 87 h5-index 87
Volume 15, issue 11
Atmos. Chem. Phys., 15, 6467–6486, 2015
https://doi.org/10.5194/acp-15-6467-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 15, 6467–6486, 2015
https://doi.org/10.5194/acp-15-6467-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Jun 2015

Research article | 12 Jun 2015

The impact of overshooting deep convection on local transport and mixing in the tropical upper troposphere/lower stratosphere (UTLS)

W. Frey1,*, R. Schofield1, P. Hoor2, D. Kunkel2, F. Ravegnani3, A. Ulanovsky4, S. Viciani5, F. D'Amato5, and T. P. Lane1 W. Frey et al.
  • 1School of Earth Sciences and ARC Centre of Excellence for Climate System Science, University of Melbourne, Melbourne, Australia
  • 2Institute for Atmospheric Physics, Johannes Gutenberg University, Mainz, Germany
  • 3Institute of Atmospheric Sciences and Climate, ISAC-CNR, Bologna, Italy
  • 4Central Aerological Observatory, Dolgoprudny, Moscow Region, Russia
  • 5CNR-INO National Institute of Optics, Florence, Italy
  • *now at: School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK

Abstract. In this study we examine the simulated downward transport and mixing of stratospheric air into the upper tropical troposphere as observed on a research flight during the SCOUT-O3 campaign in connection with a deep convective system. We use the Advanced Research Weather and Research Forecasting (WRF-ARW) model with a horizontal resolution of 333 m to examine this downward transport. The simulation reproduces the deep convective system, its timing and overshooting altitudes reasonably well compared to radar and aircraft observations. Passive tracers initialised at pre-storm times indicate the downward transport of air from the stratosphere to the upper troposphere as well as upward transport from the boundary layer into the cloud anvils and overshooting tops. For example, a passive ozone tracer (i.e. a tracer not undergoing chemical processing) shows an enhancement in the upper troposphere of up to about 30 ppbv locally in the cloud, while the in situ measurements show an increase of 50 ppbv. However, the passive carbon monoxide tracer exhibits an increase, while the observations show a decrease of about 10 ppbv, indicative of an erroneous model representation of the transport processes in the tropical tropopause layer. Furthermore, it could point to insufficient entrainment and detrainment in the model. The simulation shows a general moistening of air in the lower stratosphere, but it also exhibits local dehydration features. Here we use the model to explain the processes causing the transport and also expose areas of inconsistencies between the model and observations.

Publications Copernicus
Download
Short summary
This study examines the simulated downward transport and mixing of stratospheric air into the upper tropical troposphere as observed on a research flight during the SCOUT-O3 campaign in connection with a deep convective system, using the WRF model. Passive tracers are initialised to study the impact of the deep convection on the tracers and water vapour. We use the model to explain the processes causing the transport and also expose areas of inconsistencies between the model and observations.
This study examines the simulated downward transport and mixing of stratospheric air into the...
Citation